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High-Field Electrical Transport in Single-Wall Carbon Nanotubes
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Using low-resistance electrical contacts, we have measured the intrinsic high-field transport properties
of metallic single-wall carbon nanotubes. Individual nanotubes appear to be able to carry currents with
a density exceeding 109 A�cm2. As the bias voltage is increased, the conductance drops dramatically
due to scattering of electrons. We show that the current-voltage characteristics can be explained by
considering optical or zone-boundary phonon emission as the dominant scattering mechanism at high
field.

PACS numbers: 73.50.Fq, 72.10.Di, 73.61.Wp
The potential electronic application of single-wall car-
bon nanotubes (SWNTs) requires a detailed understand-
ing of their fundamental electronic properties, which are
particularly intriguing due to their one-dimensional (1D)
nature [1]. Metallic SWNTs have two 1D subbands cross-
ing at the Fermi energy. In the ideal case the resis-
tance is thus predicted to be h�4e2 or 6.5 kV. In early
electrical transport experiments, however, the nanotubes
typically formed a tunnel barrier of high resistance of
�1 MV with the metal contacts [2,3]. Consequently, the
bias voltage dropped almost entirely across the contacts,
and tunneling dominated the transport. A number of inter-
esting phenomena have been observed in this regime. At
low temperatures, Coulomb blockade effects prevail [2,3].
At relatively high temperatures, the transport characteris-
tics appear to be described by tunneling into the so-called
Luttinger liquid—a unique correlated electronic state in
1D conductors which is due to electron interactions [4,5].

One of the most important questions that remains to be
addressed is how the electrons traverse the nanotubes, i.e.,
whether ballistically or being scattered by impurities or
phonons. The unusual band structure of metallic tubes
suggests a suppression of elastic backscattering of elec-
trons by long-range disorder [6]. Long mean-free paths for
electrons near the Fermi energy have indeed been inferred
from regular Coulomb oscillations and coherent tunneling
at low temperatures [2,7]. However, there has been no
transport study of electrons with significant excess energy
above the Fermi energy. It is not clear whether such elec-
trons would experience strong scattering and what type of
scattering mechanism would dominate.

In this Letter we present electrical transport mea-
surements of individual nanotubes using low-resistance
contacts (LRCs). In contrast to the high-resistance con-
tacts (HRCs), a bias voltage applied between two LRCs
establishes an electric field across the nanotube which
accelerates the electrons, enabling transport studies of
high-energy electrons. We find that individual SWNTs
can sustain a remarkably high current density of more than
109 A�cm2. The current seems to saturate at high electric
field. We discuss possible scattering mechanisms and
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suggest that optical or zone-boundary phonon emission by
high-energy electrons can explain the observed behavior.
An analytic theory based on the Boltzmann equation
is developed which includes both elastic scattering and
phonon emission. The numerical calculations reproduce
the experimental results remarkably well.

The inset of Fig. 1(a) shows an atomic force microscope
(AFM) image of our typical LRC sample. The 20 nm
thick, 250 nm wide Ti�Au electrodes are embedded in
thermally grown SiO2 with a height difference of less than
1 nm which minimizes the deformation of the nanotubes
near the electrodes. This is achieved by electron-beam
lithography and anisotropic reactive-ion etching of SiO2
using a single layer of polymethylmethacrylate as both

FIG. 1. Typical I and dI�dV vs V obtained using (a) low- and
(b) high-resistance contacts. The inset to (a) shows a 0.86 3
0.86 mm2 AFM height image of a typical LRC sample, where
the z range is 10 nm. The inset to (b) plots dI�dV vs V on a
double-log scale for the HRC sample.
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electron-beam resist and etching mask, followed by metal
evaporation and lift-off. The electrodes are cleaned
thoroughly in fuming nitric acid. The nanotubes are then
deposited on top of the electrodes from a suspension
of SWNTs ultrasonically dispersed in dichloroethane.
We find that brief annealing of the electrodes at 180 ±C
improves the reproducibility of the contact resistance.
Only nanotubes with apparent height of �1 nm under
AFM are chosen for transport measurements, which are
presumably individual SWNTs. Metallic nanotubes are
selected based on the absence of gate effect on trans-
port at high temperatures [8]. This procedure yields a
typical two-terminal resistance of individual metallic
tubes of less than 100 kV (the lowest is 17 kV) at room
temperature, as compared to the �MV resistance using
Pt as the contact material in previous experiments [2].
Similar reduction in contact resistance has also been
achieved in a different contact geometry [9]. The exact
mechanism for the low contact resistance is unclear.
However, clean flat gold facets may increase the coupling
by increasing the effective contact length with a small
tube-electrode separation [10].

Figure 1 shows the typical two-terminal current I and
differential conductance dI�dV vs voltage V obtained us-
ing LRC (Au) and HRC (Pt). dI�dV is acquired si-
multaneously using a standard ac lock-in technique. The
room-temperature zero-bias resistance of the two samples
are 40 and 670 kV, respectively. For both samples, the
zero-bias conductance G decreases monotonically as the
temperature T decreases [11]. The large-bias-voltage de-
pendence of dI�dV , however, is notably different. For the
LRC sample, dI�dV increases with increasing bias, reach-
ing a maximum at �100 mV. As the bias increases further,
dI�dV drops dramatically. In contrast, the HRC sample
exhibits a monotonic increase of dI�dV as a function of
voltage up to 1 V. The inset of Fig. 1(b) plots dI�dV vs
V on a double-logarithmic scale for the HRC sample, in
which it appears that dI�dV can be fit with a power-law
function for large bias. Both the temperature dependence
of G and the bias-voltage dependence of dI�dV for the
HRC sample are typical of individual SWNTs and ropes
with similar or lower conductance values [4], which are
attributed to the suppressed tunneling density of states in
a Luttinger liquid [12]. The similar behavior around zero
bias for the LRC sample suggests that it comes from the
same origin. In the remainder of the paper, we focus on
the large-bias behavior for the LRC samples.

We have further extended the I-V measurements up to
5 V as shown in Fig. 2. Strikingly, the I-V curves at large
bias measured at different temperatures between 4 K and
room temperature essentially overlap with each other. The
current at 5 V exceeds 20 mA, which corresponds to a
current density of more than 109 A�cm2 if a spatial extent
of the p-electron orbital of �3 Å is used to estimate the
current-carrying cross section. From the shape of the I-V
curves, it is clear that the trend of decreasing conductance
2942
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FIG. 2. Large-bias I-V characteristics at different temperatures
using low-resistance contacts for a sample with an electrode
spacing of 1 mm. The inset plots R � V�I vs V .

continues to high bias. Extrapolating the measured I-V
curves to higher voltage would lead to a current saturation,
i.e., a vanishing conductance. Interestingly, the saturation
current seems to be independent of the distance between
the electrodes [13].

We find that the resistance, R � V�I , can be fit remark-
ably well by a simple linear function of V over almost the
entire range of applied voltage (see Fig. 2, inset),

R � R0 1 V�I0 , (1)

where R0 and I0 are constants. Only at high voltages near
5 V some samples start showing slight deviation from this
linear behavior. From the slope of the linear part of R-V
we find I0 � 25 mA which is approximately the same for
all of the samples we have measured.

At first sight the current saturation might be explained
from the band structure. Current in metallic nanotubes is
carried by two propagating 1D subbands. In the absence
of scattering, the chemical potentials of the right and left
moving states will differ by the applied voltage eV . At
low voltages this leads to an Ohmic response, but when
eV exceeds the Fermi energy of the 1D subbands, the left
moving states will be completely depleted and the current
will saturate. The Fermi energy, measured relative to the
nearest band edge, is approximately 2.9 eV. Experimen-
tally, however, the current starts saturating at a much lower
voltage. An alternative model is thus needed to explain the
saturation.

We expect the measured resistance to be a combination
of the resistance due to the contacts and the resistance due
to backscattering along the length of the nanotube. The
current saturation is unlikely to arise from an increased
contact resistance at high voltages since the contacts would
then behave like high-resistance tunneling contacts, and
one would expect to see features in the I-V associated
with tunneling into the 1D subbands of the nanotube. The
measured I-V , however, is featureless.
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We thus focus on the effect of backscattering in the nan-
otube. The behavior of R-V suggests that in addition to a
constant scattering term, which most probably comes from
contact scattering or impurity scattering, there is a domi-
nant scattering mechanism with a mean free path (mfp)
which scales inversely with the voltage.

Electrons can backscatter off phonons and other elec-
trons. Electron-electron scattering is appealing at first,
since it does not involve heating the lattice. The only
electron-electron scattering that contributes to resistivity
is umklapp scattering [14] with a scattering rate directly
proportional to the electron temperature Te. This gives
V�I � Te. Te will be determined by how fast the heat
can escape from the tube. If we assume that all the heat
produced is carried by electrons into the leads and that
the temperature along the tube is uniform [15], we have
IV � 4�p2�3��kBTe�2�h, where the left-hand side is the
rate at which heat is produced, and the right-hand side is
the heat current carried by the two 1D channels. Hence
we expect that I � V 1�3, which cannot describe the experi-
ments. We have verified this V 1�3 behavior by numerically
solving a Boltzmann equation similar to that discussed be-
low. Luttinger-liquid effects, which have been ignored in
the above arguments, tend to enhance umklapp scattering
at low energies [12]. This would make the agreement with
experiment even worse.

This suggests that we must consider scattering from
phonons. The coupling will be strongest for phonons
which compress and stretch bonds on the lattice scale.
There are three possible categories of phonons: (1) twis-
tons or long-wavelength acoustic phonons [16], (2) op-
tical phonons which are derived from the in-plane E2g2

mode of graphite with a frequency of 1580 cm21, and (3)
in-plane zone-boundary phonons with momentum which
connects the two Fermi points of graphene. While zone-
boundary phonons are not directly observable optically,
force-constant models put their frequency in the range
1000 1500 cm21 [17]. Twiston scattering is not relevant.
The mfp for twiston scattering was estimated in [16] us-
ing a simple tight-binding model for the electron-phonon
coupling. Comparing this with a corresponding estimate
of the optical phonon scattering mfp shows that the op-
tical phonon scattering dominates, provided T ø QD ø
eV�kB (QD � 2000 K is the Debye temperature). More-
over, twistons may be pinned by the substrate.

Now we discuss backscattering due to the emission of
optical or zone-boundary phonons. A related effect has
been discussed previously in the context of semiconduc-
tors [18]. The key point is that for an electron with en-
ergy E to emit a phonon of energy h̄V, there must be an
available state to scatter into at energy E 2 h̄V. In the
presence of an electric field E , electrons are accelerated,
h̄ �k � eE . It is simplest to consider the case in which the
coupling to the phonon is so strong that, once an electron
reaches the threshold for phonon emission, it is immedi-
ately backscattered. As indicated in the schematic in the
inset of Fig. 3, a steady state population is then established
in which the right moving electrons are populated to an
energy h̄V higher than the left moving ones. The current
carried in this state can be computed from a Landauer type
argument to be

I0 � �4e�h�h̄V . (2)

If we choose h̄V � 0.16 eV (corresponding to
1300 cm21), this leads to a saturation current of 25 mA,
which is independent of sample length and agrees very
well with the measured saturation current.

In this picture, the mfp for backscattering phonons �V

is equal to the distance an electron must travel to be ac-
celerated to an energy above the phonon energy: �V �
h̄V�eE . This may be combined with a constant elastic
scattering term via Mathiessen’s rule to obtain an effective
mfp, �21

eff � �21
e 1 �21

V , where �e is the elastic scatter-
ing mfp. The resulting resistance, R � �h�4e2� �L��eff�,
then has the empirically observed form of Eq. (1) with
R0 � �h�4e2�L��e and I0 given in Eq. (2).

To put the above interpretation on a more quantitative
basis, we consider the Boltzmann equation for the distribu-
tion functions fL,R�Ek , x, t� of left and right moving �L, R�
electrons (details will be provided in a future publication):

�≠t 6 yF≠x 6 yFeE≠E� fL,R � �≠tfL,R�col . (3)

Here yF is the Fermi velocity, and we have chosen
to express the momentum dependence of f in terms
of Ek � 6h̄yFk. The left-hand side describes the
collisionless evolution of the electrons in the presence
of an electric field E . For the collision term on the
right, we consider a sum of three terms: (1) Elastic
scattering, �≠tfL�e � �yF��e� � fR 2 fL�, where �e
is the elastic mfp. (2) Backscattering from phonons,
�≠tfL�pb � �yF��pb� ��1 2 fL�f1

R 2 fL�1 2 f2
R ��. Here
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FIG. 3. Numerical calculation of I-Vcharacteristic by solving
Boltzmann transport equation including elastic impurity scatter-
ing and phonon emission as depicted in the left inset. See text
for the parameters used.
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f6 are evaluated at E 6 h̄V. �pb , which depends on
the strength of the electron-phonon coupling, is the
distance an electron travels before backscattering once the
phonon emission threshold has been reached. This should
be contrasted with �V , the distance required to reach
the threshold. We assume that the phonon temperature
is much less than the phonon energy of �2000 K, so
that the Bose occupation factors can be ignored. Fi-
nally, we consider (3) forward scattering from phonons,
�≠tfL�pf � �yF��pf� ��1 2 fL�f1

L 2 fL�1 2 f2
L ��.

The effects of the contact resistance may be included as
a boundary condition at the ends of the tube. For instance,
at the left contact (x � 0) we have

fR�E, 0� � t2
Lf0�E 2 mL� 1 �1 2 t2

L�fL�E, 0� , (4)

where t2
L is the transmission probability for the contact,

and f0�E 2 mL� � �exp��E 2 mL��kBT � 1 1	21 is the
Fermi distribution function of the left contact with elec-
trochemical potential mL and temperature T .

We have solved Eqs. (3) and (4) numerically to obtain
the steady state distribution function fL,R�E, x� in the pres-
ence of an applied voltage mL 2 mR � eV as a function
of h̄V, �e, �pb,pf, and t2

L,R . The current is then simply
given by I � �4e�h�

R
dE� fL 2 fR�. Figure 3 shows an

example of the numerical calculation of I-V characteristic
for a sample length of L � 1 mm. The parameters used
in the plot are h̄V � 0.15 eV, t2

L,R � 0.5, �e � 300 nm,
�pb � 10 nm, and �pf � `. The resemblance to the ex-
periment is remarkable. It is interesting to note that the cur-
rent is insensitive to the contact scattering for V * 0.5 V.
Contact scattering affects only the low bias resistance, giv-
ing rise to the positive curvature in R-V near V � 0.

Assuming local thermal equilibrium, the Boltzmann
equation may be used to derive hydrodynamic equations
which govern the transport of charge and energy. These
equations may then be solved analytically and give results
which agree well with the simulations. They show the
following: (i) The empirical formula [Eq. (1)] is exact in
the limit eV ø h̄VL��pb , which means that the energy
gained by an electron within distance �pb must be much
less than the phonon energy, or, equivalently, �pb ø �V .
(ii) For larger V the simple formula breaks down, and in
the limit of very large V the resistance becomes constant,
R � �h�4e2�L��21

e 1 �21
pb �. For the parameters used in

Fig. 3, the crossover voltage is roughly 15 eV. Indeed,
there appears a small negative curvature at 5 V in the V�I
vs V plot (inset of Fig. 3), which signals the beginning of
the breakdown of the empirical formula. The curvature
would be less pronounced if a shorter value for �pb is
used. We note that 10 nm seems rather short. An estimate
using a simple tight-binding model gives �pb � 100 nm.
More work is needed to have a more accurate estimate of
the electron-phonon coupling strength.
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We have assumed that the heat generated in the tube es-
capes sufficiently quickly to avoid raising the lattice tem-
perature too high. A simple estimate of the nanotube’s
thermal conductivity indicates that it is unlikely that all of
the heat could be transmitted through the contacts. How-
ever, the nanotube is in intimate contact along its entire
length with the substrate, which may be regarded as a ther-
mal reservoir. It would clearly be desirable to study fur-
ther the nature of the thermal contact between the nanotube
and substrate. Measurements on suspended nanotubes may
provide some useful information.
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