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Adsorptionlike Collapse of Diblock Copolymers
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A linear copolymer made of two reciprocally attracting N-monomer blocks collapses to a compact
phase through a novel transition, whose exponents are determined with extensive Monte Carlo simula-
tions in two and three dimensions. In the former case, an identification with the statistical geometry of
suitable percolation paths allows one to predict that the number of contacts between the blocks grows
like N9�16. In the compact phase the blocks are mixed and, in two dimensions, also zipped, in such a
way to form a spiral, double chain structure.

PACS numbers: 61.41.+e, 05.70.Jk, 64.60.Ak, 64.60.Kw
Our knowledge of the conformational properties in solu-
tion of single, isolated polymers with inhomogeneous se-
quence, is still extremely limited [1]. A major challenge in
statistical physics is the description of the possible confor-
mational transitions of such systems, their universal scaling
behaviors, and the nature of the different phases in finite
dimensional situations. In the last few decades a similar
program has been accomplished, to a substantial extent, for
homopolymers [2], while for heteropolymers, so far, most
insight is limited to approaches of mean field type [1,3].

Block copolymers [3,4] are interesting as members
of the large family of heteropolymers, like proteins or
polyampholytes, characterized by the above inhomo-
geneity. These copolymers are important as interface
stabilizing agents and can display intriguing phenomena
of microphase separation, a major topic in soft condensed
matter research. The status of the art, as far as studies
of hetero- and copolymer conformational transitions are
concerned, suggests to us to investigate in detail, without
resorting to mean field approximations, prototype prob-
lems involving relatively simple molecular architectures.
Of particular interest will be those transitions which pos-
sibly reveal peculiar to systems with chain inhomogeneity,
without counterpart in the homopolymer case.

In this Letter we address one of such problems, the col-
lapse from the high temperature (T ) swollen state to the
low-T compact state of a copolymer whose two equally
long blocks, A and B, attract each other with short-range
forces. A physical realization could be that of oppositely
charged A and B, immersed in a screening solvent. An-
other case, involving AA and BB attraction, rather than
repulsion, is one in which the monomers of A are able to
establish hydrogen bonds with those of B, which add to
the van der Waals forces, thus creating extra AB attrac-
tive interactions. In the first instance we consider here the
effect of AB attractive interactions acting alone. In both
two dimensions (2D) and 3D, the collapsed phase has an
approximate alternating, periodic structure, as far as the
space distribution of A and B monomers is concerned. We
determine numerically, and exactly in 2D, the exponents
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of this collapse, showing that it has qualitative features
in common with adsorption phenomena [5]. Nevertheless,
the universality class coincides with neither that of adsorp-
tion [5], nor that of theta collapse of homopolymers [6].

We model the diblock copolymer by a self-avoiding
walk (SAW) w of length jwj � 2N steps (monomers)
on square and cubic lattice. The walk w consists of N
consecutive monomers of type A (wA), followed by N
monomers of type B (wB). The Hamiltonian is H�w� �
2

P
i[wA,j[wB

e, where e is a positive energy, and the sum
runs over pairs �i, j� of lattice sites visited by the copoly-
mer (the AB junction excluded), which are nearest neigh-
bors (nn). The scaling regime can be described by the n

exponent governing the asymptotic behavior of the canoni-
cal average radius of gyration,

�Rg� �

P
w exp�2H�w��T �R�w�
P

w exp�2H�w��T�
� Nn , (1)

where the sums extend to all 2N-step configurations w of
the copolymer, with radius R�w� relative to the center of
mass. In the swollen, high-T regime one should expect
n � nSAW , with nSAW � 3�4 [7] and 0.588 [8] in 2D
and 3D, respectively. In a compact, low-T phase, n �
1�d. Another important quantity is the specific heat C �
1
N ≠�H��≠T , which at a conformational transition between
high-T and low-T regimes is expected to obey the scaling:

C � N2f21F��T 2 Tc�Nf� (2)

for large N and for T close to the transition temperature
Tc, F being a suitable scaling function. For T � Tc, n

should take a peculiar value, nc.
By extensive Monte Carlo sampling we computed �Rg�,

C, and �H� for N up to 800 in both 2D and 3D. The
sampling was based on a multiple Markov chain method,
which has been shown to be particularly suitable to deal
with polymers at low T [9]. Several Markov chains, each
one designed to sample at a different T , are generated in
parallel [10]. The sampling at low T is then considerably
enriched by swapping configurations between chains con-
tiguous in T . Since each Markov chain is ergodic, so is the
© 2000 The American Physical Society
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composite one [9]. This procedure dramatically reduces
the correlations within each chain. Both in 2D and 3D
the simulations have been performed by using 25 parallel
chains covering a range from T � ` to deeply inside the
collapsed phase (T � 0.5).

Our data for C (Fig. 1) signal clearly the presence of
a transition, with peaks in the T -dependence sharpening
and growing with N , consistently with Eq. (2). The
corresponding Tc and f could be deduced from the N
dependence of the height, h�N�, and position, Tc�N�,
of these peaks. Indeed, in the scaling limit we expect
h�N� � N2f21 and Tc�N� 2 Tc�`� � N2f, for increas-
ing N [Tc�`� � Tc]. Since a linear least squares fit of the
log of h gives a very large x2 statistical error, we consider
h�N� � AN2f21�1 1 B�N� where a scaling correction
1�N is included. The least squares fit in this case gives a
lower x2 and we obtained (see Fig. 2) f � 0.56 6 0.02
in 2D and f � 0.60 6 0.01 in 3D. These values
of f allowed us to extrapolate Tc�`��e � 1.5 6 0.2
and Tc�`��e � 2.9 6 0.2, in 2D and 3D, respectively.
From log-log plots of �Rg� vs N we also estimated
n at several temperatures. At T � Tc we obtained
nc � 0.748 6 0.008 in 2D and nc � 0.583 6 0.007 in
3D. In fact, n stays approximately constant for T $ Tc.
Only for T , Tc, n decreases, approaching values con-
sistent with a compact phase (n � 1�d) for low T .

The nc estimates appear fully compatible with the ex-
ponents appropriate to a swollen SAW. In this respect the
new collapse is analogous to a polymer adsorption on an
attractive, impenetrable wall [5]. Indeed, at an adsorption
transition one also finds nads � nSAW . However, the f’s
determined here are definitely different from those describ-
ing the growth with N of the number of polymer-wall

FIG. 1. Specific heat in 2D as a function of T for N � 50 (�),
100 (¶), 200 (�), 300 (D), 400 (≤), 600 (±), and 800 (filled
triangles).
contacts in adsorption (fads � 1�2 and fads � 0.496 6

0.004 in 2D [5] and 3D [11], respectively). Further analo-
gies with adsorption are revealed by the large N behavior
of the average energy (or �NAB�) per monomer. Figure 3
indicates crossings of the various �H��N curves. The T
range at which the crossings concentrate signals the tran-
sition and is consistent with the estimated Tc. Moreover
�H��N ! 0 for T . Tc and �H��N ! const for T , Tc

(Fig. 3 inset). This behavior is different from what is found
for the theta collapse, where the energy density curves do
not cross each other, and �H��N is asymptotically nonzero
for all temperatures. The average number of polymer-wall
contacts at opposite sides of an adsorption transition be-
haves similarly to �NAB� here. In addition, as in ad-
sorption, at T � Tc we find that 2�H��N � Nf21. By
fitting this behavior, we obtained alternative f estimates
(f � 0.55 6 0.04 and f � 0.61 6 0.03, in 2D and 3D,
respectively), fully consistent with those based on C.

Apart from being a transition from a swollen to a com-
pact state, the copolymer collapse has nothing in common
with a homopolymer theta collapse, which is character-
ized by a peculiar nQ fi nSAW [nQ � 4�7 (2D) and 1�2
(3D) [2,6] ]. Also the fQ is clearly different from the
f’s here (fQ � 3�7 in 2D [6] and fQ � 1�2 in 3D [2]).
The copolymer collapse is indeed a novel transition, deter-
mined by the peculiar inhomogeneous backbone sequence
and by its interactions.

In both 2D and 3D, typical configurations sampled at
low T present a maximal alternance of A and B monomers,
compatibly with the constraint of forming a diblock chain.
In 2D (Fig. 4) A and B are also zipped on each other, and
the resulting double chain structure forms spirals. The
zipped, double chain represents a concrete realization of
a polymer with orientation dependent interactions. For

FIG. 2. Fits of h�N� in 2D (triangles) and 3D (squares).
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FIG. 3. �H��N vs T in 3D for N � 50 (�), 100 (¶), 200 (�),
300 (D), 400 (≤), 600 (±), and 800 (filled triangles). The inset
shows the convergence of �H��N to 0 for T . Tc and to a
constant for T , Tc.

models of such polymers, spiral compact phases have been
recently observed in 2D [12]. In 3D the compact phase
has more complex, unzipped configurations and substantial
entropy. On the other hand, the A and B monomers are
not segregated, and their alternance in space realizes an
approximately periodic microphase structure.

By assuming nc � 3�4, we can predict f exactly in
2D, following a strategy of identification with geometric
percolative objects, which in the past revealed extremely
fruitful for homopolymer problems [6,13,14]. The idea is
that the statistics of suitably chosen percolative contours
could reproduce the critical behavior of interacting poly-
mers in the conditions of interest. The homopolymer at
the theta point in 2D is known to have the same statistics
as the external perimeter (hull) of a critical percolation
cluster [15], and this coincidence is at the basis of the full
exact characterization of theta scaling [6,13,14]. On the
square lattice, the incipient infinite cluster of the perco-
lation problem for elementary squares (only squares with
an edge in common are connected) is expected to have
an externally accessible hull which, besides assuming the
configurations of a self-avoiding ring, has the fractal di-
mension Dc1 � 1�nSAW � 4�3 of a swollen SAW [16].
This has been recently established on a rigorous basis in
Ref. [17]. External accessibility means there should exist
at least one path of connected vacant squares by which any
neighborhood of the hull be connected to points at infinite
distance. We identify our A and B blocks at the transition
with the two halves in which the externally accessible hull
of the cluster is divided by two diametrally opposite, dis-
tant points (Fig. 5). The identification of A and B with the
copolymer blocks at collapse will make sense, provided
the reciprocal nn contacts of these halves have a fractal
296
FIG. 4. Typical configuration at low T (T � 0.5 , Tc) in d �
2 for N � 100. Filled and empty circles denote, respectively, A
and B monomers.

dimension matching the correct f exponent, as shown be-
low. This fractal dimension results from an effective AB
attraction. The fact that A and B are identified with exter-
nally accessible hull portions excludes from the count the
full hull self-contacts possibly produced by the presence of
inaccessible reentrances (Fig. 5). Indeed, such reentrances
cannot be included in A or B, and it is in virtue of their
exclusion that the accessible hull has a fractal dimension
Dc1 , Dhull � 7�4. In Ref. [17] Coulomb gas results for
the T � 0 loop gas are used to determine the dimensions
of various fractal sets in the cluster of the hexagon percola-
tion problem, for which it is easier to discuss geometry and
effective interactions of these sets. In view of the peculiar
connectivity of the hexagonal lattice, hull reentrances are
always accessible by at least one path of vacant hexagons.
Thus, external accessibility requires now existence of at
least two distinct vacant paths joining the neighborhood of
the hull to infinity [17]. The probability with respect to
all percolative configurations of a given hull profile can
be interpreted as the result of a decision process (between
being occupied or vacant) for the hexagons progressively
touched by the hull itself. It is thus easy to realize that AB
nn contacts have the same effect as attractive interactions
in a polymer problem. Indeed, while normally each step of
the hull involves a decision for a new hexagon (and thus a
probability factor 1�2, the hexagon percolation threshold,
in the total weight), at an AB contact the involved hexagon
has already made his decision, and no factor is required.
Thus, AB contacts increase the probability of the hull con-
figuration. Besides determining Dc1 exactly, the methods
of Ref. [17] allow us to conclude that the set of AB contacts
described above must have a fractal dimension Dc2 � 3�4,
which coincides with that of the “red” hexagons (squares
in our case), i.e., of those hexagons whose removal would
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FIG. 5. Points 1 and 2 separate the accessible hull portions
A and B. The light-continuous line represents an inaccessible
reentrance of the hull. k: Red square corresponding to AB
nn contacts. m: Contact of A with a hull reentrance. The
union of A and B has fractal dimension 4�3. By including in
the hull definition also inaccessible reentrances, the dimension
becomes 7�4.

interrupt the cluster connection between the opposite dis-
tant points [18]. Dc1 and Dc2 are also expected to be uni-
versal with respect to different lattice structures [17] and
thus should hold also for the square lattice. The proposed
identification leads to f � 9�16: indeed, for N steps ac-
cessible half-perimeters, the average number of contacts
should scale like NDc2�Dc1 . Dc2�Dc1 � 9�16 � 0.56 . . . is
strikingly close to our numerical determination, supporting
the correctness of our assumptions [19].

In summary, we gave a description of the collapse un-
dergone by a copolymer with two reciprocally attracting
blocks. We could determine with high precision, and
exactly in 2D, the exponents of this new transition, which
has analogies with homopolymer adsorption and theta col-
lapse, but falls in a universality class different from both.
The low-T dense phase is not segregated and, in 2D, turns
out to be spiral, with zipped A and B. To our knowledge,
the exact determination of f in 2D is the first application
of percolation results to a genuinely inhomogeneous poly-
mer problem. We checked that the universality class of
the transition remains the same if, more consistently with
the physical picture of oppositely charged blocks, AA and
BB repulsions are included in the Hamiltonian. A natural
extension of our study consists of a systematic exploration
of the phase diagram in regions where, e.g., the AA and
BB interactions are also attractive and compete with the
AB one. This corresponds to a copolymer in which the
difference between AA (or BB) and AB interactions is
produced by hydrogen bonds. This competition generates
a very rich phase diagram, with both segregated and
unsegregated compact phases and interesting new
transitions.
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