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Bloch Electrons in a Magnetic Field: Why Does Chaos Send Electrons the Hard Way?
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We find that a 2D periodic potential, with different modulation amplitudes in the x and y directions,
and a perpendicular magnetic field may lead to a transition to electron transport along the direction of
stronger modulation and to localization in the direction of weaker modulation. In the experimentally
accessible regime we relate this new quantum transport phenomenon to avoided band crossings due to
classical chaos.

PACS numbers: 73.20.Dx, 05.45.Mt, 73.50.Jt
Theoretical studies of quantum chaos have recently in-
cluded quasiperiodic systems concentrating so far on the
kicked Harper model [1]. These studies have led to the dis-
covery of interesting phenomena, e.g., surprising metal-
insulator transitions [2] whose origins are avoided band
crossings induced by classical chaos [3]. While the kicked
Harper model is a numerically convenient toy model, we
here focus on a prominent example [4] from solid state
physics which nowadays is experimentally accessible [5]:
an electron moving in a 2D periodic potential, a so-called
Bloch electron, subjected to a magnetic field. It is classi-
cally chaotic [6], and it is quasiperiodic when the number
of magnetic flux quanta per unit cell of the potential is
irrational [4]. In this paper we present a new 2D quan-
tum transport phenomenon: By changing the potential
strength, keeping the ratio of the modulation strength in
the x and y directions fixed, we find that transport ex-
clusively along the direction of weaker potential modula-
tion changes to transport exclusively along the direction of
stronger modulation (Fig. 1).

Ballistic transport exclusively along the direction of
weaker modulation is expected for the limiting cases
of either a very small or a very large potential strength
compared to the magnetic field strength. This is based on
the properties of the Harper model [7–11] which approxi-
mates Bloch electrons in a magnetic field in both limiting
cases. For transitions to ballistic transport along the direc-
tion of stronger modulation we find two distinct origins.
In the regime where potential and magnetic field are of
comparable strength [12] we show that there are many
transitions which we relate to avoided band crossings
induced by the classical nonintegrability. In the regime
of large potential strength where the energy spectrum
consists of separated bands, there are additional transitions
in some of these bands which can be explained in the
tight-binding approximation and which are not related to
the classical limit. Experimentally, the transitions of the
transport direction in the first regime should be observ-
able with lateral surface superlattices on semiconductor
heterojunctions.
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FIG. 1. Time evolution for initially localized electron wave
packets [14] spreading in 2D periodic potentials with different
modulation amplitude in the x and y directions (bottom) and a
perpendicular magnetic field. (a) For K � 5 the wave packet
spreads ballistically in the direction of weaker modulation only,
as expected for K ! 0 and K ! `. (b) For K � 10 the wave
packet spreads ballistically in the direction of stronger modula-
tion only. Shown are 55 3 55 unit cells of the potential; times
are in units of the cyclotron period 2p�vc, Vy�Vx � 1.25, and
F�F0 � 89�55.
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The one-particle Hamilton operator for an electron with
charge 2e and mass m in a magnetic field and in the
simplest 2D periodic potential has the form

H �
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The magnetic field B � rotA, where A is the vector po-
tential, is taken to be homogeneous and perpendicular to
the xy plane. The properties of the system depend on the
following three dimensionless parameters: the potential
strength

K � �Vx 1 Vy�4pma2�h2, (2)

the ratio Vy�Vx , and the ratio of the magnetic flux
penetrating a unit cell of the potential divided by the
magnetic flux quantum, F�F0 � a2B��h�e� (see, e.g.,
Ref. [13]). The ratio of the potential strength to magnetic
field strength is given in terms of these parameters
by 2�Vx 1 Vy���h̄vc� � KF0�F, with the cyclotron
frequency vc � eB�m. In the following, we will vary
only K , while the other parameters will be kept fixed:
Vy�Vx � 1.25 and F�F0 � �

p
5 2 1��2, the golden

mean. Figure 1a shows the time evolution of an initially
localized wave packet for K � 5 [14]. It spreads ballis-
tically in the direction of weaker potential modulation
(x direction) and localizes in the direction of stronger
modulation ( y direction) as expected for K ! 0 and
K ! `. In contrast, for K � 10 (Fig. 1b), localization
occurs in the direction of weaker modulation and one finds
ballistic spreading in the direction of stronger modulation.
In other words, as a function of potential strength (keeping
the ratio Vy�Vx constant), Fig. 1 shows that the system
undergoes a metal-insulator transition in the x direction
and an insulator-metal transition in the y direction.

We demonstrate that this change in the direction of trans-
port is related to changes of spectrum and eigenfunctions
of operator (1). Numerically, one has to study rational ap-
proximants F�F0 � q�p. Then, operator (1) is periodic
in the x and y directions and its eigenenergies depend on
the two phases kx and ky of the magnetic Brillouin zone.
In Fig. 2 [top (bottom)], by increasing K from 5 to 10, one
finds for the energy subspectrum with only kx �ky� varied a
transition from wide to extremely narrow (narrow to wide)
minibands while eigenfunctions change from extended to
localized (localized to extended) in the x direction ( y di-
rection) [15]. These wide (extremely narrow) minibands
correspond to an absolutely continuous (pure point) spec-
trum in the irrational case and we will abbreviate them in
the following by “bands” (“levels”). Figure 2 shows that
eigenfunctions in the y direction and the subspectrum un-
der variation of ky are dual to the corresponding behaviors
in the x direction. The origin of this duality, which we have
found for all parameters studied, seems to be related to the
origin of the Aubry duality [9] of the Harper model and
remains to be explored. By using the duality we concen-
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FIG. 2. Subspectra for ky � 0 and all kx (top), kx � 0 and all
ky (bottom) vs K , and typical eigenfunctions [15] for K � 5
and K � 10 �F�F0 � 89�55�.

trate in the following on the properties in the x direction.
In Fig. 3, one can see the subspectrum under variation of
kx on larger scales than in Fig. 2 (top). For K � 0, one
has Landau levels which for small K broaden linearly with
K forming Landau bands which have a fine-structure de-
scribed by the Harper model (see below). When increasing
K , the spectrum becomes very complex: First of all, there
are many transitions from “bands” to “levels” and vice
versa. Second, one observes many avoided crossings of
spectral regions, e.g., there is one in the box corresponding
to Fig. 2a. One notices that the spectral transitions happen
in the range of avoided crossings.

We propose that these spectral transitions for Bloch elec-
trons in a magnetic field are in fact due to the avoided band
crossings: These are analogous to avoided level cross-
ings in classical chaotic, bounded quantum systems with
a discrete spectrum, and they occur in extended systems
with a classically nonintegrable Hamiltonian. In Ref. [3],
consequences of avoided band crossings were analyzed by
studying a three-band model, in which each band was de-
scribed by a tight-binding Hamiltonian, e.g., by a Harper
model. In the range where the bands avoid crossing,
a perturbation calculation predicted that the parameters
of their tight-binding Hamiltonian effectively change. In
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FIG. 3. The subspectrum for ky � 0 and all kx vs K �F�F0 �
34�21�. Several avoided crossings can be observed which are
accompanied by transitions from energy “bands” to energy “lev-
els” or vice versa. The box indicates the region shown in Fig. 2
and the arrow points to the spectral region that avoids crossing
the one above.

particular, when one of these tight-binding Hamiltonians
is a quasiperiodic Harper model and if the change is large
enough this leads to transitions from “bands” to “levels”
or vice versa [3]. In our case of Bloch electrons in a mag-
netic field, such a perturbation analysis for isolated avoided
crossings cannot be repeated as the energy spectrum is
much too complex (Fig. 3). There is, however, a strong
analogy: There are spectral regions performing avoided
crossings as this extended system is classically noninte-
grable [6]. Before the crossings (small K), these spec-
tral regions may be described by Harper-like models [16].
Finally, we also find transitions from “bands” to “levels”
or vice versa in the range of the avoided crossings. This
analogy strongly suggests that, also for Bloch electrons in
a magnetic field, avoided band crossings due to classical
chaos give rise to the spectral transitions in Fig. 3, thereby
inducing the change of transport properties in the x di-
rection in Fig. 1. Thus, finally, the change in transport is
linked to the classical nonintegrability of the Hamiltonian
(1). It is important to stress that the classical dynamics
shows no corresponding change in transport for these pa-
rameters. Instead, as usual in the field of quantum chaos,
the classical dynamics enters via its nonintegrability that
here leads to the avoidance of band crossings.

There are exceptional spectral transitions for large
K which have a different origin: For strong potential,
K ¿ F�F0, and for sufficiently low energy the spec-
trum of Bloch electrons in a magnetic field consists of
well-separated bands. In the tight-binding approximation
each of them has a fine-structure described by Harper’s
equation [7]

cn11 1 cn21 1 2l cos�2psn 1 n�cn � Ẽcn , (3)

where l is the important parameter in the following.
While l . 1 corresponds to localization in the x direc-
tion, l , 1 corresponds to spreading in the x direction, for
typical irrational F0�F [10]. These separated bands fol-
low the bands in the case without magnetic field in which
the Hamiltonian separates in the x and y directions such
that each band is the sum of an energy band in the x and
one in the y direction. The na th band �na � 0, 1, 2, . . .�
of the 1D potential Va cos�2pa�a� has a dispersion
amplitude ea�na�, where a � x, y, that is determined
by tunneling. We will use the fact that it increases with
index na and that it decreases exponentially with potential
strength Va . With magnetic field the transport properties
of each band, enumerated by �nx , ny�, are determined in
the tight-binding approximation by Harper’s equation with
l � ey�ny��ex�nx�. While for K ø F�F0, each Landau
band has a fine-structure again described by Harper’s
equation [Eq. (3)] [8] with a constant l � Vx�Vy , here l

depends on the band indices nx , ny . There are two cases:
For ny # nx we find from the properties of ea�na� that
ey�ny� , ex�nx� (for Vy . Vx), resulting in l , 1 as in
the limit K ! 0. For ny . nx we find that there exists
a Kc�nx , ny� where a transition occurs. For K . Kc, one
still has ey�ny� , ex�nx�. In contrast, for K , Kc the
opposite is true, leading to l . 1 and thus to localization
in the x direction. These transitions within a tight-binding
band are a consequence of the l dependence of the Harper
model and are not related to avoided band crossings or the
classical dynamics. An example of such a transition is the
tight-binding band �0, 1� for which Kc � 1000 [17]. In
the subspectrum with kx varied it consists of “bands” for
K . Kc, while for K , Kc we find “levels” which appear
(below the regime where the tight-binding approximation
is valid) in Fig. 3 at E��h̄vc� � 1.5, K � 15.

In order to complete the picture on spectral transitions
for Bloch electrons in a magnetic field let us mention that,
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without magnetic field for large K , pairs of bands can
make isolated crossings, e.g., the bands with �0, 2� and
�1, 1� at K � 50. In the presence of a magnetic field
each of these crossings becomes an avoided crossing of
Harper models and may be well described by the models
of Ref. [3] and may have many spectral transitions and
corresponding changes in transport. Let us mention that
the properties of the tight-binding bands before and after
an isolated crossing are not affected.

By generalizing these results to arbitrary Vy . Vx for
Bloch electrons in a magnetic field [Eq. (1)] we find that
there are spectral transitions which have two distinct ori-
gins: (i) In the regime where the tight-binding description
is valid, the K dependence of the bandwidths ea�na� and
the properties of the Harper model predict spectral transi-
tions within tight-binding bands with ny . nx that are un-
related to the classical limit. In the subspectrum with kx

varied these transitions are from “bands” to “levels” only,
and not vice versa when decreasing K from `. In order to
end up again with “bands” for K ! 0 there have to be fur-
ther transitions from “levels” back to “bands.” (ii) These
transitions and many more transitions in both ways ap-
pear in the regime where tight-binding bands merge and
form Landau bands (Fig. 3). We ascribe them to avoided
crossings of spectral regions which in turn are induced by
classical chaos. Corresponding to the spectral transitions
in the subspectrum when kx is varied, we find dual transi-
tions when ky is varied (Fig. 2). These transitions in both
subspectra cause the observed change of transport from the
direction of weaker to that of stronger modulation (Fig. 1).
In general, transport in just one direction, as in Fig. 1, will
occur whenever an initial wave packet excites an energy
range with eigenfunctions of just one type, namely, either
extended in the x or in the y direction. In the exceptional
case that the small energy range of width kT around the
Fermi energy contains both types of eigenfunctions, one
finds a superposition of transport in each direction, namely,
a crosslike spreading. For other 2D periodic potentials,
e.g., the potential of Eq. (1) with different lattice constants
or rectangular antidot potentials, we find the same changes
of the transport direction in the regime of avoided band
crossings [18].

These phenomena should be experimentally accessible
using lateral superlattices on semiconductor heterojunc-
tions [5] by measuring the ratio ryy�rxx � sxx�syy .
Weak disorder as present in the experimental probes will
destroy the transport phenomenon in the regime of the
exponentially narrow tight-binding bands. Instead, in
the regime where tight-binding bands and Landau bands
merge and avoided band crossing occurs, preliminary
numerical studies show that the phenomenon should be
observable.

This work was supported in part by the Deutsche
Forschungsgemeinschaft.
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