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Density of States in Coupled Chains with Off-Diagonal Disorder
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We compute the density of states r�´� in N coupled chains with random hopping. At zero energy, r�´�
shows a singularity that strongly depends on the parity of N . For odd N , r�´� ~ 1�j´ ln3´j, with and
without time-reversal symmetry. For even N , r�´� ~ j ln´j in the presence of time-reversal symmetry,
while there is a pseudogap, r�´� ~ j´ ln´j, in the absence of time-reversal symmetry.
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Since the works of Dyson, it has been known that one-
dimensional systems with off-diagonal disorder may show
anomalous behavior in their density of states (DOS) and
their localization properties [1]. This anomalous behavior
has reappeared in many reincarnations, ranging from
Dyson’s original application of masses coupled with
springs, to the random hopping model [2,3], quantum XY
spin chains [4], supersymmetric quantum mechanics [5],
one-dimensional classical diffusion in a random medium
[6], narrow-gap semiconductors [7], and charge density
wave materials [8]. In all these systems, it has been shown
that both the DOS and the localization length diverge at
zero energy. These two divergencies are closely linked by
a theorem by Thouless [9].

Recently, it was found that the localization length of a
wire consisting of N of such chains shows a remarkable de-
pendence on the parity of N [10,11]: At zero energy, i.e.,
at the center of the band, the localization length diverges
for odd N (odd N includes the pure one-dimensional case
N � 1), while wave functions remain localized for even
N . Moreover, it was found that staggering in the hop-
ping parameter (as the consequence of a Peierls instabil-
ity), may lead to an additional set of delocalized states for
all N . 1, regardless of parity [11]. For comparison, in
the pure one-dimensional case N � 1 staggering always
enhances localization. In this paper we consider the DOS
for the N-chain wire with off-diagonal disorder. Unlike in
the one-dimensional case, this is a problem that requires
separate attention, since the Thouless theorem which links
DOS and localization length does not hold for N . 1
coupled chains. Moreover this problem is also of relevance
for the random flux model, which is a special example of
off-diagonal randomness, and whose localization proper-
ties and density of states near ´ � 0 are the subject of an
ongoing debate [12].

To be specific, we consider the DOS for the Schrödinger
equation

´cn � H cn � 2tncn11 2 t
y
n21cn21 , (1)

where cn is an N-component wave function and tn an
N 3 N hopping matrix. The index n � 1, . . . , L labels
the site index along the wire. The length of the wire, mea-
sured in units of the lattice spacing, is L. The reason why
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this system can display anomalous behavior near zero en-
ergy is the existence of a particle-hole or chiral symmetry,
which is absent in the presence of on-site disorder or next-
nearest neighbor hopping [13]: Under a mapping cn !
�21�ncn, the Hamiltonian H changes sign, H ! 2H .
As a result, the eigenvalues of H occur in pairs 6´. There
are two mechanisms by which the chiral symmetry is
known to affect the DOS near ´ � 0. First, level repul-
sion of the eigenvalue ´ with its mirror image 2´ causes a
universal suppression of the DOS near ´ � 0 [14]. This
suppression appears on the scale of a level spacing, is inde-
pendent of the geometry, but becomes unimportant in the
thermodynamic limit. The second mechanism, for which
several different descriptions exist [2–5,7], is special for a
(quasi-)one-dimensional geometry and survives in the ther-
modynamic limit. It is responsible for the divergence of the
DOS in the pure one-dimensional case. Below we present
a calculation of the DOS in the multichain case, combining
ideas from the Fokker-Planck approach to localization in
multichannel quantum wires [15] and the calculation of the
DOS in the one-dimensional random hopping model [3,7].

We first state our main results. We find that the parity
dependence that was previously obtained for the localiza-
tion properties is also present in the density of states. For
odd N , the DOS diverges at zero energy according to

r�´� ~
w2

j´ ln3�w2�´�j
, N odd, (2)

where w is a dimensionless parameter governing the ran-
domness in the tn. The bandwidth is chosen as the unit
of energy. In Eq. (2) and in the remainder of the paper
we assume ´ . 0. The DOS for ´ , 0 then follows from
r�2´� � r�´�. The form of the divergence (2) is inde-
pendent of whether time-reversal symmetry is broken or
not, i.e., of whether the hopping matrices tn are generi-
cally real or complex. For even N , in contrast, the density
of states strongly depends on the presence or absence of
time-reversal symmetry (labeled by the parameter b � 1
or 2, respectively),

r�´� ~ j´�w2jb21j ln�w2�´�j, N even. (3)

In the presence of time-reversal symmetry, r�´� shows
a logarithmic divergence as ´ ! 0, while in the absence
© 2000 The American Physical Society 2913
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of time-reversal symmetry a pseudogap is opened, r�´�
vanishes at ´ � 0. Such a strong dependence on time-
reversal symmetry is a remarkable result. An effect of
comparable magnitude appears in the suppression of the
gap by a weak magnetic field in a normal metal in the
proximity of a superconductor. In the remainder of this
paper we derive the results (2) and (3) assuming a specific
statistical model for the hopping matrices tn in Eq. (1). In
analogy to the standard case of diagonal disorder, where
it is established that spectral properties do not depend on
details of the randomness, we believe that the same is
true for our case of off-diagonal disorder, i.e., that the
singularity of the DOS near ´ � 0 is governed by the
fundamental symmetries of the Hamiltonian H only. As
an illustration of the general validity of our result, we close
with a comparison to numerical simulations.

As we are interested in the DOS of the random hop-
ping model (1) in the thermodynamic limit, the boundary
conditions at the two ends of the chain are not important.
For convenience we choose hard wall boundary conditions,
t0 � tL � 0. We can solve Eq. (1) recursively in terms of
a sequence of Hermitian N 3 N matrices an,

ancn11 � tyn cn, an � 2tyn �´ 1 an21�21tn . (4)

The boundary condition at n � 0 implies a0 � 0. Evalu-
ating the Schrödinger equation at n � L then yields that
´ is an eigenvalue of H if and only if

´cL � 2t
y
L21cL21 � 2aL21cL , (5)

i.e., if aL21 has an eigenvalue 2´.
As a statistical model for the tn that contains all the rele-

vant symmetries, we parametrize the tn in terms of the gen-
erators tn � eWn , where Wn is a real (complex) matrix for
b � 1 (2), and choose the matrices Wn from independent
Gaussian distributions with mean and variance given by

��Wn�mn�Wn��
rs� �

1
2

w2b

∑
dmrdns 2

1 2 h

N
dmndrs

∏
,

��Wn�mn� �
1
2

�21�nDdmn .
(6)

Here h governs the fluctuations of trWn [16] and D mea-
sures the staggering of the hopping parameter. (D is the
gap size that the staggering would induce in the absence of
disorder.) We assume that the disorder and staggering are
weak, and that the energy is small compared to the band-
width (w2, D, ´ ø 1).

The matrix aL21 has eigenvalues am that can be pa-
rametrized as am � tan�fm�2� (m � 1, . . . , N). As we
have discussed below Eq. (5), the energy ´ is an eigen-
value of the Hamiltonian, if and only if there is an angle
fm with fm � 22 arctan´. For general ´, however, none
of the fm will take this value. Nevertheless, we can use
the angles fm to compute the (disorder averaged) density
of states. Hereto we first note that aL11 � aL21 in the ab-
sence of disorder, staggering, and for ´ � 0. Then, taking
disorder, staggering, and a finite energy into account, and
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considering the length L as a fictitious “time,” the angles
fm perform a Brownian motion on the unit circle, which is
such that upon increasing L, they move around the circle in
a positive direction. The rate at which the fm pass through
22 arctan´ as we increase L, i.e., their current, equals the
number of states per unit length N�´� with energy between
0 and ´. (This is a generalization of the node-counting
theorem [17] used to compute the DOS for N � 1 [3,7].)
For comparison, we remark that, in the absence of disor-
der, the angles fm move around at a constant speed ~ ´,
resulting in a constant DOS. With disorder, their motion
acquires a random (Brownian) component, which dramat-
ically affects their average speed, and hence the density of
states, as we shall see below.

For a quantitative description a different parametrization
of the eigenvalues am proves to be more convenient,

am � tan�fm�2� � eum . (7)

The variables um are restricted to the two branches
Imum � 0 and Imum � p in the complex plane; see
Fig. 1a. We refer to these as lower and upper branches,
respectively. Noting that the um are related to the angles
fm on the unit circle, we see that a (fictitious) particle
with coordinate um that vanishes on one of the branches at
6` reappears at the opposite branch, as indicated by the
arrows in Fig. 1a. Upon increasing L by 2, the um change
according to um ! um 1 dum, where, to lowest order in
w, ´, and D, the average and variance of the increments
dum are

�dum� � 2´ coshum 1 2D 1 w2b
X

nfim

coth
um 2 un

2
,

�dumdun� � 4w2�dmn 2 �1 2 h��N� .
(8)

Taking L as a continuous variable, their distribution func-
tion P�u1, . . . , uN ; L� obeys the Fokker-Planck equation
[18]

≠P
≠L

� w2
X
m,n

≠

≠um

µ
dmn 2

1 2 h

N

∂
J

≠

≠un

J21P

2
X
m

≠

≠um

�´ coshum 1 D�P , (9)

J �
Y
m,n

sinhb��um 2 un��2� .

FIG. 1. (a) Two branches for the coordinate u. (b) In the sim-
plified model, the branches are truncated at 6umax � ln�w2�´�.
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For large L the solution of Eq. (9) acquires a steady state
carrying a current j�´� equal to the integrated DOS N�´� in
the thermodynamic limit. Unfortunately, except in the case
N � 1, where a solution in closed form is possible [7], it
is notoriously problematic to find the steady-state solution
of a Fokker-Planck equation of the type (9), due to the
lack of detailed balance [18]. Instead, below we present
a qualitative analysis of the Brownian motion process de-
scribed by Eq. (9), illustrating the mechanisms that lead to
the anomalous behavior of the DOS near ´ � 0. We give
a detailed account of the case h � 1, followed by a brief
discussion of the general case h fi 1 and a comparison
with numerical simulations.

Let us first identify the relevant parameters in the
Brownian motion process (9). There are N fictitious
Brownian “particles” with coordinates um (m � 1, . . . , N)
and diffusion coefficient D � w2. Three forces Fw , FD,
and F´ act on the particles, arising from the presence
of disorder, staggering, and energy, respectively. The
force Fw � �w2b�2� coth��um 2 un��2� is a repulsive
interaction, with a hard core on the same branch and a
soft core on different branches. (We adopt a convention
where the particles have unit mobility.) Staggering causes
a constant force field FD � D that favors motion to the
right on both branches. Finally, F´ � 6´ coshu pushes
the particles to the right (left) on the lower (upper) branch
and thus causes the nonzero steady-state current. For
small energies ´ ø w2, motion is governed by the force
F´ for large juj, jReuj ¿ umax, where

umax � ln�w2�´� , (10)

while diffusion and the forces Fw and FD are dominant for
small u, jReuj ø umax. Following Ref. [3], we now ap-
proximate our model by truncating the branches at jReuj �
umax, see Fig. 1b, and adding a one-way move towards the
upper (lower) branches at the end points; see Fig. 1b. The
logarithmic dependence of umax on ´ ensures that we find
the correct functional dependence of r�´� for the singular-
ity at zero energy, since only the nonuniversal prefactor is
affected by the simplifications made.

We first discuss the case D � 0. For N � 1, the par-
ticle with coordinate u needs a time �2umax�2�2D to dif-
fuse to the end point of a branch, as one can verify from a
solution of the one-dimensional diffusion equation on the
line 2umax , u , umax, with hard wall boundary condi-
tions at u � 2umax and absorbing wall boundary condi-
tions at u � umax [3]. Hence the current is j�´� � N�´� ~

D�4u2
max, and after differentiation with respect to ´, one

finds Eq. (2) for the density of states. Diffusion effectively
speeds up the particle, explaining the enhancement of the
DOS relative to the clean case [1–3,7]. For N � 2, the
picture is completely different. As a result of their mu-
tual repulsion, the two particles with coordinates u1 and
u2 get trapped near the end points, say at u1 � 2umax and
u2 � umax 1 ip. Now the particles have to diffuse out
of their traps against their repulsive interaction, until they
eventually meet at Reu1 � Reu2 and the repulsive force
Fw starts to favor travel (see Figs. 2a and 2b). Such a pro-
cess costs a large time, which can be calculated from the
diffusion equation for two particles on a line with hard wall
boundary conditions at Reu1 � 2umax and Reu2 � umax

and absorbing boundary conditions at Reu1 � Reu2. We
find a current j�´� � �4umaxF3

w�D2� exp�22Fwumax�D�,
resulting in the DOS (3). (The prefactor umax arises from
the degeneracy of the meeting point on the line.) We
conclude that the DOS for two coupled chains has only
a logarithmic singularity for real hopping disorder, and a
pseudogap for complex disorder. The strong b dependence
of the DOS stems from the b dependence of the interac-
tion force Fw .

The qualitative behavior of the DOS for general N . 2
depends crucially on the parity of N and closely resembles
the scenarios we have outlined above for N � 1 and N �
2. If N is even, all particles get “trapped” near the ends of
the branches, half of them on the lower branch near 2umax,
and half of them on the upper branch near umax, like in the
case N � 2; cf. Fig. 2d. The repulsive interaction force
Fw is smallest for the two particles that are closest to the
origin. These two particles dominate the current, resulting
in a DOS of the form (3). If N is odd, on the other hand,
the picture is like that of the case N � 1; see Fig. 2c.
All particles get trapped at the two ends, except for one
“free” particle, for which diffusion is not slowed down by
the interaction forces (the repulsive forces from the other
particles cancel exactly). Hence, for odd N , the DOS is of
the form (2). This even-odd effect is reminiscent of that
found for the conductance at ´ � 0, where the existence
of a delocalized state could be attributed to the existence
of a similar free transmission eigenvalue [11].

The effect of staggering D is to add a constant force
pointed to the right on both branches. As a function of
the staggering strength, the system alternates between be-
havior corresponding to even and odd N . Repeating the
above analysis, we find that with staggering, the DOS
shows the maximum (2) if D � �N 1 1 2 2j�w2b�2,

FIG. 2. Schematic picture of the forces on the fictitious par-
ticles in the simplified model of Fig. 1b. For N � 2, their mu-
tual repulsion slows the particles down and traps them near the
end points (a). When they eventually meet, the repulsion en-
hances travel (b), and quickly restores the situation (a). The
case N � 3 is similar to N � 1: Two particles are trapped
near the ends as a result of their repulsion, while there is no
net force on the third particle (c). For N � 4, all particles are
trapped near the end points (d). The repulsive force on the two
middle particles u2 and u3 is smallest, and these two dominate
the current according to a scenario similar to the case N � 2
[see (a) and (b)].
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FIG. 3. Density of states, computed from numerical simulations
for N � 1, 3 (a) and for N � 2, 4 (b). The data shown on the
linear scale are computed for L � 200 (L � 500 for N � 1)
while the data in the insets are for L � 105 (L � 106 for N � 1).

j � 1, . . . , N , whereas it shows the minimum (3) if D �
�N 2 2j�w2b�2, j � 1, . . . , N 2 1. For all other values
of D, for ´ ! 0 we have

r�´� ~ ´bn21, n � min
j�1,...,N

Ç
2D

w2b
2 N 2 1 1 2j

Ç
.

(11)

The parity dependence and the shift of critical points with
D are reminiscent of similar phenomena predicted for spin
ladders [19].

The case of arbitrary h fi 1 is not much different from
the case h � 1 we considered above; up to prefactors
the ´ dependence of the DOS is not changed. The only
exception is the case h � 0, N � 2, when the center of
mass u1 1 u2 is pinned. As a result, the degeneracy giving
rise to the logarithm in Eq. (3) is lifted, and the logarithmic
prefactor vanishes.

We conclude with a comparison to numerical simula-
tions for the DOS in a quantum wire on a square lattice
with a width between N � 1 and N � 4, and a length L
up to 105. For b � 1 and also for N � 1 the hopping
amplitudes are taken from a uniform distribution in the in-
terval [0.5,1.5], while for b � 2 the random flux model
2916
[12] is used, where the randomness is introduced only via
the random phases of the hopping amplitudes. We use the
recursive Green function technique [12,20] with an imagi-
nary part of the energy that is always smaller than 0.01´ to
compute the density of states. Results of an average over
4 3 104 106 disorder realizations are shown in Fig. 3.
The agreement with our theoretical results, Eqs. (2) and
(3), is excellent.
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