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Mechanical Flocculation in Flowing Fiber Suspensions
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Non-Brownian fibers commonly flocculate in flowing suspensions. A particle level simulation tech-
nigque modeling fibers as chains of rods connected by hinges is developed to probe flocculation. Sim-
ulations show that flocculation can be induced solely by interfiber friction—attractive forces between
fibers are not necessary. Simulated mechanical floc characteristics are consistent with experimental ob-
servations. In contrast, simulations of flocs formed by attractive forces behave qualitatively differently.

PACS numbers. 61.20.Ja, 47.55.Kf, 82.70.Dd

Theflocculation of particlesin viscous mediaisawidely
encountered phenomenon. Flocculation typically results
from attractive forces between particles, arising from elec-
tromagnetic (van der Waals forces), or chemica (nonad-
sorbed polymer depletion [1], adsorbed polymer bridging
[2]) mechanisms. Here, we describe a distinct type of
flocculation that occurs without attractive forces between
particles.

Suspensions of non-Brownian fibers often become
heterogeneously dispersed when sheared (Fig. 1). Un-
derstanding this flocculation is important in processing
fiber-filled fluids, and may aso have implications for
flowing solutions of semiflexible macromolecules [3].

Mason was the first to recognize that fiber flocculation
occurs under conditions where electromagnetic and chemi-
cal forces are negligible compared to hydrodynamic forces
[4,5]. Others have suggested the importance of mechani-
cal fiber features such as flexibility, irregular equilibrium
shapes, and frictional contact forces [6—8], athough the
exact role of each is not completely understood. The
process by which fibers flocculate has also not been fully
elucidated. Mason [4] postulated that flocculation is a
dynamic equilibrium process, with fibers continuously
entering and leaving flocs, both rates being equal at
steady state. Meyer and Wahren [9] proposed a physical
mechanism, wherein fibers elastically deformed by the
flow crowd together and interlock. Experiments support
this mechanism, showing the shear modulus of fiber
networks to be proportional to the bending stiffness of
constituent fibers [10], and floc cohesiveness to be linked
to the storage of elastic energy in fibers[11]. However, the
flocculation process is difficult to observe experimentally,
as fibers are small, opague, and moving rapidly in most
applications.

To systematically investigate fiber flocculation, we have
developed a particle level simulation technique. Fibers
are modeled as chains of rigid rods connected by hinges
(Fig. 2). Equations governing the motion of a model fiber
are derived from force and torque balances on each rod in
achain, with the constraint that the chain contour length is
constant. Particles of interest typically have diameters D
of several microns, and lengths L of afew millimeters, thus
particle and fluid inertia are neglected. A brief description
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of the model is presented here; more details are available
elsewhere [12,13].

The force and torque balances on each rod in a chain
contain contributions from four sources. hydrodynamic
forces and torques, elastic bending and twisting torques,
interparticle forces and their moments (including friction),
and constraint forces and their moments (to hold rods to-
gether in a chain). The fluid is assumed to be Newtonian,
and hydrodynamic interactions between particles are ne-
glected. Here we consider simple shear flow, u, = yz.
Bending and twisting torquesaregivenby |Y,| = «,(0, —
6"), where x = b (bend), ¢ (twist). The parameters «;
and «, are related to the bending and twisting stiffness of
a rea fiber, respectively, by «,I = Eyl and k,l = GJ.
Here [ isthe rod length used in the model fiber, Ey and G
are the Young's modulus and shear modulus of the fiber
material, and I and J are the appropriate area moments
of inertia. Equilibrium angles 6, allow arbitrary equilib-
rium model fiber shapes to be specified. Fibers contact
when the distance between surfaces s falls below a cut-
off value (s = R/3), where R is the fiber radius. Short
range repulsive forces | f*P| = F exp(—20s/R) are ap-
plied between contacting fibers, where F = 1207 wLRy
is chosen to prevent particles from overlapping. Contact-
ing fibers also interact through static friction forces | £1ric|,
which constrain particles to roll over one another with-
out dlipping. Static friction forces are applied at contacts

FIG. 1. Top view of fiber suspension flow between plexiglass
paralel plates—highly flocculated 0.125 wt% Kraft pulp in
87% volume aqueous glycerol solution.
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FIG. 2. Schematic of amodel fiber, and the forces and torques
that act on each rod.

if | firic] = w3 freP|, where u}* is the static friction
coefficient. If | fric| > u7*'| fP|, contacting fibers are
alowed to dlide freely, mimicking a diding friction coeffi-
cient of zero. Constraint forces holding the chain together
satisfy the chain inextensibility constraint.

A simple experiment motivates the simulations. An ini-
tially homogeneous 0.125 wt. % suspension of bleached,
softwood pulp fibers in 87% volume aqueous glycerol so-
lution (viscosity u = 0.1 Pa - sec at 20 °C) is sheared in
a 2.5 mm gap between parallel plates with the shear rate
at the outer edge of the plates ‘% = y = 40/sec. Fibers
rapidly aggregate. After 10 sec (edge strain of 400), fibers
begin to concentrate in strands oriented in the flow ()
direction. After 30 sec, these fiber flocs densify and roll
into tubes that tend to align in the vorticity (radial) direc-
tion, as shown in Fig. 1. Fibers used in this experiment
have an average length of =2.5 mm and average diame-
ter of =35 um. Equilibrium fiber shapes are shown in
Fig. 3a. A typical bending stiffness of softwood pulp fibers
isEyl =8 X 10712 Nm? [14].

Simulations under similar conditions show the impor-
tance of mechanical features on flocculation. The model
fiber aspect ratio r, = L/D =70 and dimensionless
bending stiffness DS = f;& = 0.050 are specified to
match experimental conditions, and the model fiber equi-
librium shape (shape in the absence of flow) is helical to
mimic real particles (Fig. 3b). Simulations of 0.125 vol %
suspensions of 121 neutrally buoyant fibers undergoing
simple shear flow are performed. An initially homoge-
neous suspension is sheared for a strain of 5000 in a cubic
simulation box (side length = 2.5 fiber lengths). Periodic
boundary conditions are applied. When particles interact
through repulsive normal forces only, the suspension
remains homogeneously dispersed (Fig. 4a). When the
coefficient of static friction is increased to about 20, flocs
form within strains of y = 500-1000 (Fig. 4b).
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FIG. 3. (a) Equilibrium shapes of Kraft pulp fibers used
in experiments, (b) model fiber equilibrium shape used in
simulations.

( %

- )

FIG. 4. Simulations of 0.125 vol % suspensions of helical
fibers, r, = 70, DS = 0.050: (&) static friction coefficient
uit =0, (b) ui* = 20.

Simulations exhibit floc formation in the absence of
attractive forces between fibers. Here, frictional interac-
tions lead to flocculation. However, other features such
as fiber equilibrium shape and fiber stiffness play roles.
For example, suspensions of intrinsically straight fibers at
the same concentration, aspect ratio, and stiffness as in
Fig. 4 remain homogeneously dispersed, even for u " =
. Suspensions of helical fibers at the same conditions as
in Fig. 4b remain dispersed if the stiffness is dropped to
DS = 0.0050.

To quantify fiber mass distribution, the pair distribution
function g(r) for fiber centers of mass (CM) is employed,
where r is the distance between fiber CM. Figure 5 com-
pares pair distribution functions for the two suspensions
consideredin Fig. 4. Here, g(r) aretime averaged after the
suspension has equilibrated for a strain of 1000, and av-
eraged over five runs with different initial configurations.
Curve (b) inFig. 5 showsthat static friction forcesand he-
lical fiber equilibrium shapes lead to an increased proba-
bility of two fibers being close to one another. In contrast,
without interfiber friction, g(r) = 1 [curve (a)].

The coherency of fiber flocs is thought to derive from
the storage of elastic energy in the fibers. Evidence con-
necting floc strength and elastic energy storage is provided
by experiments—for example, nylon fiber flocs disperse
readily when bending stresses are diminished by heat-
ing the flocs above the nylon glass transition temperature
[11]. Our smulations capture this elastic energy storage
phenomenon. Model suspensions are first sheared, and
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FIG. 5. Steady state fiber CM pair distribution function
for 0.125vol % suspensions of helical fibers, r, = 70,

DS = 0.050: (a) p;* =0, (b) uf* =20. [Flexible fiber
CM’s may coincide, so g(0) isn't necessarily zero.]
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FIG. 6. Fraction of initial elastic energy stored in fibers ver-
sus dimensionless time (¢/t..1.) after cessation of shear flow:
0.125 vol % helical fibers, r, = 70, DS2 = 3.73, u}* = 20.

subsequently theflow isturned off, allowing fibersto relax.
Figure 6 tracks the fraction of initial elastic energy stored
in the fibers as a function of dimensionless time after ces-
sation of shear flow, where time is arbitrarily scaled by

the quantity fea1e = g;ggj Dimensionless bending stiff-
ness is now defined as DS2 = = 7=

Eltese 13 homogeneous
suspensions, the elastic energy quickly decays to zero and
fibers assume their equilibrium shapes. In flocculated sus-
pensions, the elastic energy relaxes to a finite value, as
fibers cannot revert completely to their equilibrium shapes
because of contacts with other fibers.

To illustrate the importance of elastic energy in hold-
ing flocs together, we simulate the breakup of individual
flocs in an infinite shear flow. Here, flocs are first formed
in a simple shear flow with periodic boundaries as dis-
cussed above. Individual flocs are then removed from the
suspension and placed alone in an unbounded shear flow.
As fibers break from the floc, they are carried away by
the flow—the diminishing population of fibersin aflocis
tracked as afunction of time. Figure 7 follows the breakup
of afloc that originally contains 80 fibers of aspect ratio 70
for various dimensionless fiber stiffnesses. Asthe stiffness
DS = MEVYL decreases, flocs disperse faster. Simulations
are consistent with the experimental observation that flocs
are more prevalent at low shear rates and low suspending
fluid viscosities (high stiffnesses) [15,16]. However, even
flocs made of stiff fibers eventually break up. This sup-
ports the dynamic equilibrium hypothesis of Mason and
co-workers—fibers constantly enter and leave flocs, and
do not irreversibly bind to them [4].

Now we compare simulations of suspensions
with attractive interfiber forces to those with fric-
tional forces. Here, a short range attractive force
| f2"] = Aexp(—10s/R) is applied between fibers,
where A = 120w u LRy, aong with the repulsive force
| frP| = (F + A)exp(—20s/R). The net interparticle
force | fo°t| = | f2* + fr°P| is repulsive for small sepa-
rations s/R < 0.1, and attractive for 0.1 < s/R < 0.33.
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FIG. 7. Fibersremaining in afloc in unbounded shear flow as

afunction of strain for various fiber stiffnesses, r, = 70, helical
fibers, uj* = 20.

The net attractive force magnitude reaches a maximum of
157 LRy at s/R = 0.14. Thisforceisreatively strong;
for softwood pulp fibersin aflow where u = 0.1 Pa - sec
and v = 50/sec, the corresponding maximum attractive
force is 1 X 107> N, which is roughly 200 times larger
than the measured adhesion force between contacting pulp
fibers in water [17].

Simulations of helical fibers with short range attractive
forces and no friction develop spatial inhomogeneities in
shear flow, as shownin Fig. 8a. The pair distribution func-
tion for the fiber CM in Fig. 8b indicates an increased
probability of fibers being close together, similar to sus-
pensions with interfiber friction (Fig. 5).

Despite structural similarities between suspensions
with attractive and frictional interparticle forces, attractive
force flocs are less cohesive—they store essentially no
energy upon relaxation of shear, and disperse quickly
in unbounded shear flow. Figure 9 tracks the fiber
population in a floc that initially contains 80 fibers as it
breaks up in unbounded shear flow. For a dimensionless
stiffness DS = 0.050, attractive forces delay floc breakup
only dlightly compared to the case with purely repulsive
interfiber forces. Figure 9 aso demonstrates that floc
coherency increases with decreasing fiber stiffness DS.
This behavior differs qualitatively from both experimental
observations and simulations of mechanical flocs. Thus,
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FIG. 8. (@) Suspension structure, (b) fiber CM pair distribution
function for 0.125 vol % suspension of helical fibers, r, = 70,
DS = 0.050, u*' = 0, with attractive forces between fibers.
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FIG. 9. Fibersremaining in afloc in unbounded shear flow as

afunction of strain for various fiber stiffnesses. r, = 70, helical

fibers, u3*" = 0, attractive interfiber forces except where noted.

our simulations demonstrate the importance of mechanical
features, rather than attractive forces, on fiber flocculation.
In conclusion, flocs form in particle level simulations
under similar conditions (fiber aspect ratio, concentration,
gtiffness, equilibrium shape) as in experiments. Focs
form in the absence of attractive forces between par-
ticles—interfiber friction and repulsive interactions alone
induce flocculation. Simulated mechanical flocs exhibit
characteristics consistent with experiments—elastic en-
ergy storage upon cessation of shear flow, and increased
floc cohesiveness with increased fiber stiffness. Simulated
attractive force flocs do not exhibit these characteristics.
While successful, the simulation technique has short-
comings and limitations that should be mentioned. The
static friction coefficient of 20 used in simulations is much
higher than the experimentally measured value of 0.5
for pulp fiber surfaces [17]. The lack of dliding friction
forcesin the current model is a possible cause for this dis-
crepancy. The model neglects hydrodynamic interactions
between fibers. Existing techniques [18,19] for studying

hydrodynamic interactions could be included, at an in-
creased computational cost. Finally, in experiments, flocs
grow to be several times larger than the current simulation
box size. Extensive computer memory is needed to
examine larger, more realistic flow geometries.
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