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Compositional Patterning in Systems Driven by Competing Dynamics Of Different Length Scale

Raúl A. Enrique and Pascal Bellon
Department of Materials Science and Engineering and Frederick Seitz Materials Research Laboratory,

University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
(Received 22 October 1999)

We study an alloy system where short-ranged, thermally driven diffusion competes with externally
imposed, finite-ranged, athermal atomic exchanges, as is the case in alloys under irradiation. Using a
Cahn-Hilliard-type approach, we show that when the range of these exchanges exceeds a critical value
labyrinthine concentration patterns at a mesoscopic scale can be stabilized. Furthermore, these steady-
state patterns appear only for a window of the frequency of forced exchanges. Our results suggest that
ion beams may provide a novel route to stabilize and tune the size of nanoscale structural features in
materials.

PACS numbers: 61.80.Az, 05.70.Ln, 47.54.+ r
The spontaneous formation of steady-state patterns
have been extensively observed in many equilibrium
and nonequilibrium systems [1]. While for equilib-
rium systems (e.g., ferrofluids, block copolymer melts,
etc.) patterning is a result of the competition between
repulsive and attractive interactions of different length
scales, in nonequilibrium systems (e.g., reaction-diffusion
systems, etc.) steady-state patterning is often the result of
the competition between several dynamical mechanisms.
A conceptual connection between the two classes of
systems can sometimes be realized with the construction
of Lyapunov functionals and effective Hamiltonians, by
which steady-state pattern formation in dynamical systems
is interpreted as resulting from the competition between
different types of effective interactions.

The kinetic Ising-type model with competing dynamics
and its continuum mean field counterpart are instruments
by which we hope to understand a whole class of nonequi-
librium driven systems [2,3], ranging from fast ionic con-
ductors to alloys under irradiation. The main ingredient
of this model is the competition between two dynamics:
one the one hand, a thermally driven mechanism trying
to bring the system to thermodynamical equilibrium; on
the other hand, externally imposed particle exchanges of
a nature essentially athermal. The usual attempt has been
to express the steady state of the system in terms of ef-
fective Hamiltonians and effective thermodynamic poten-
tials. Garrido, Marro, and collaborators [4] were able to
derive effective Hamiltonians for several types of 1D Ising
models with competing dynamics. Rácz and collaborators
[5] studied the relation between the range of the externally
imposed exchanges and the range of the effective interac-
tions. In the context of alloys under irradiation, using a
kinetic Ising-type model, Vaks and Kamyshenko [6] de-
rived a formal expression for the steady-state probability
distribution in terms of effective interactions, while from a
continuum perspective Martin [7] studied the correspond-
ing dynamical phase diagram by an effective free energy.
The possibility of patterning as a result of the competing
dynamics has not been considered in these works. How-
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ever, in the limiting case of arbitrary length external ex-
changes, patterning has been recently observed in mean
field and Monte Carlo simulations [8]. In this situation, the
coarsening of segregated phases (magnetic domains in the
Ising case) saturates, leading to a steady-state labyrinthine
patterning at a mesoscopic length scale. This microstruc-
ture is rationalized in terms of a competition between
the attractive nearest neighbor interactions and a repulsive
electrostaticlike effective interaction. These patterns do
not appear if the external exchanges are short range, e.g.,
when they occur between nearest neighbors [9,10]. The
behavior difference between these two limiting regimes
raises the question of whether there exists a critical value
for the range of external exchanges for patterning to occur.
The main objective of this Letter is to address this ques-
tion, which, besides having its own theoretical interest, is
relevant to alloys under irradiation. Indeed, forced reloca-
tion of atoms in displacement cascades may extend beyond
nearest neighbor distances, especially in the case of dense
cascades or for open crystal structures [11].

To render the problem more concrete, let us consider a
binary alloy with a positive heat of mixing under irradia-
tion. Each time an external particle collides with the solid,
a local atomic rearrangement is produced. This rearrange-
ment has a ballistic component that mixes the atoms
regardless of their chemical identity, trying to bring the
system to a random solid solution. During this ballistic
mixing, a number of exchanges of atomic positions occur,
with an average relocation distance R. The frequency of
these exchanges, G, is then proportional to the number
of collision cascades per unit of time. The case R ! `,
or arbitrary-length ballistic exchanges, has already been
studied: The macroscopic governing equation is identical
to that describing a binary alloy undergoing a chemical
reaction A % B [12] and the one describing a block
copolymer melt [13]. From the studies of these systems,
the physics of this case is well understood. In terms of
the frequency of forced exchanges G, it has been shown
that, while high values bring the system to a random
solid solution, there is a critical value below which the
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homogeneous concentration profile becomes unstable
towards phase separation. As in spinodal decomposi-
tion, enriched regions form and coarsen. However, the
characteristic length of the domains l, instead of growing
indefinitely towards a macroscopic phase separation,
saturates at a mesoscopic scale, l`. For G values close to
the critical value, the steady-state concentration profile
has a sinusoidal-wave appearance, with diffuse interfaces,
which is referred to as the weak-segregation regime.
For smaller G values, the concentration profile presents
sharper interfaces, with a square-wave-like appearance,
which is referred to as the strong-segregation regime. In
each regime, the characteristic length has been shown
to follow a power law with the exchange frequency
l` � G2f, with an exponent f of 1�4 for the weak- and
1�3 for the strong-segregation regime [13].

In the case of ballistic exchanges of a finite range R,
there should still be a critical value G�R� below which the
system phase separates. The question is whether phase
coexistence takes place at a macroscopic or a mesoscopic
scale. In principle, we can predict that, if certain G equili-
brate a wavelength l for arbitrary length exchanges, finite-
range exchanges must also generate patterns when R ¿ l.
It is, however, difficult to determine a priori the exact con-
ditions under which coarsening will saturate as a function
of R and G. In this Letter we show that given a certain R
there is an interval �G1�R�, G2�R�� for the stabilization of
patterns. Above G2 the homogeneous concentration profile
is stable, and below G1 the coarsening continues with the
time, with the system separating into macroscopic phases.
The extent of this interval for patterning decreases with R,
reaching a zero value at a critical, nonzero value Rc, when
G1�Rc� � G2�Rc� � Gc. For ballistic mixing with a radius
smaller than Rc, patterning is not possible. We also show
that, given a mixing distance R, there is an upper bound
for the wavelengths attainable as G ! G

1
1 �R�. These con-

clusions are in agreement with recent kinetic Monte Carlo
simulations of binary alloys under finite-range ballistic ex-
changes [14,15].

We study the problem using a Cahn-Hilliard-type de-
scription of one-dimensional fronts, simulating the walls
of the labyrinthine patterns. We first investigate the dy-
namical trends of the system by a linear stability analysis,
and then determine the long-time, steady-state behavior by
a variational analysis. The equation describing the tempo-
ral evolution is composed of two terms, one for thermal
diffusion and another one for ballistic mixing [7]:

≠c

≠t
�

≠c th

≠t
1

≠cbal

≠t
. (1)

Here we have chosen to represent the concentration field
by a globally conserved order parameter c�x� so that the
homogeneous concentration profile (solid solution) corre-
sponds to c � 0. In the previous equation, the first term is
simply given by M=2� dF

dc �, where F is the global equilib-
rium free energy, and we have assumed a constant mobility
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M. As for the second term, we actually need to perform a
derivation. For that purpose, let us consider first the bal-
listic mixing occurring one dimensionally between planes
along a crystallographic direction. The rate of change of
concentration in the plane i due to interchange of atoms
with the planes labeled j is given by [7]

≠c
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≠t
� 2G

X
j

wj�ci 2 ci1j� � 2G�ci 2 �c�� ,

(2)

where wj is a normalized weight function describing the
distribution of ballistic exchange distances, and the brack-
ets denote the corresponding (discrete) weighted spatial
average. The extension to the continuum is immediate,
and we write the governing equation as

≠c

≠t
� M=2

µ
dF
dc

∂
2 G�c 2 �c�R� . (3)

where wR�x� is now a continuous function peaked around
the origin with a width proportional to R, and the average
denoted by the brackets is defined as

�c�R �
Z

wR�x 2 x0�c�x0� dx0. (4)

In the limit R ! 0, the ballistic term reduces to a Lapla-
cian term, expressing diffusion. In limit R ! `, we
recover the governing equation for the case of arbitrary-
length ballistic exchanges.

In analogy to what was done in the case of arbitrary-
length exchanges, we seek to find a Lyapunov functional
for this problem [8,13], which we shall refer to as the
effective free energy functional of the system [16]. This
functional is given by E � F 1 gG, and it is built so as to
determine the kinetics: ≠c

≠t � M=2� dE
dc �. Here, G is a new

term describing effective interactions related to the ballistic
term, and to simplify the notation we use g � G�M for
the rest of this paper. The functional E can be interpreted
as a modification of the equilibrium free energy F, which,
by being minimum at steady state, allows us to define a
variational formulation.

For F, we use a Ginzburg-Landau free energy,

F �
Z

�2Ac2 1 Bc4 1 Cj=cj2� dx , (5)

while G is expressed by a self-interaction of the form

G �
1
2

Z Z
c�x�g�x 2 x0�c�x0� dx dx0, (6)

with g being a kernel satisfying

=2g�x 2 x0� � 2�d�x 2 x0� 2 wR�x 2 x0�� . (7)

To proceed further, at this point we need to make a
choice of the weight function wR . A Yukawa-type potential
has been proposed by Goldenfeld [17]. This form fits
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the observed distribution distances of ballistic exchanges
for crystals under irradiation [11], while allowing us to
handle part of the minimization problem analytically. In
one dimension, wR�u� � R�2 exp�2juj�R�.

Having stated the problem, we start by performing a
stability analysis of Eq. (3). For small perturbations of
the form evt1ikx around a constant profile c � 0, it is
straightforward to find the dispersion relation:

v�k�
M

� 2Ak2 2 2Ck4 2
gR2k2

1 1 R2k2 . (8)

A series of plots of this dispersion relationship for different
values of g is shown in Fig. 1. As in the case of arbitrary-
length ballistic exchanges, there is a critical value g2 below
which the homogeneous concentration profile becomes un-
stable. Below this value, there is a window of k values
�k1, k2� for which the homogeneous solution is locally un-
stable, suggesting a wavelength selection. For smaller
values of g, the dispersion relation resembles the one
of spinodal decomposition, suggesting macroscopic phase
separation.

To confirm these predictions, we use a variational ap-
proach, based on minimizing the effective free energy
functional E. Let us consider first the weak-segregation
regime, where the choice of wR allows us to solve the prob-
lem analytically, and then consider the strong-segregation
regime, where we need to appeal to a numerical treatment.

In the weak-segregation regime, we can perform the
minimization of E by considering a sine family of para-
metric functions, c�x� � a sin�kx�. We obtain the energy
per unit length:

�E� �a, k� � 2a2 A
2

1 a4 3B
8

1 a2k2 C
2

1 a2 gR2

4�1 1 k2R2�
. (9)

Minimization of this energy is performed analytically,
and concentration patterning, indicated by solutions with
nonzero values of k and a, is found for an interval in g.

FIG. 1. Growth factor v�k� for small perturbations of wave
vector k.
In reality, the value of g1 predicted by this parametric
function is an underestimation. Before that value is
reached, the energy per unit length for the macroscop-
ically separated system becomes lower than the energy
per unit length for the sine profile. The crossover point
determines the actual value of g1 in the weak-segregation
regime approximation, where patterning occurs in the
interval given by
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,

g2 � �A 1 C�R2�2�2C .
(10)

This interval shrinks to zero at a critical value of Rc �p
C�A, corresponding to gc � 2A2�C. As a consequence

of g1 being determined by a crossover of energies, a tran-
sition towards macroscopic phase separation occurs at a
finite value of k. As a result, there is a bound in the wave-
length of the patterns for a given R.

In the strong-segregation regime, we need to improve
over the approximation of sine waves for a proper
evaluation of g1 away from the critical point. To this
purpose, we propose to minimize the effective free en-
ergy functional using the tanh-sine family of parametric
functions c�x� � a tanh�m�k sin�kx��. The parameter m
serves to change the wave profile continuously from a
sinusoidal type to a tanhlike type with sharp interfaces,
matching the concentration profile of an equilibrium
interface.

The minimization can be performed analytically with
respect to the parameter a, where we find that the val-
ues of g and k which minimize the effective free energy

FIG. 2. Wave vector k as a function of g for several values of
R. Dashed-dotted lines mark the limits of patterning as predicted
by the sine profiles in the weak-segregation regime. The dashed
line corresponds to the large R power-law fit. Insets (a) and
(b) show the concentration profile for R � 10 in the weak and
strong segregation regimes, respectively.
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FIG. 3. Steady-state regimes as a function of R and g. Asymp-
totics for g1 are indicated by dashed lines, for R � Rc (sine
profiles) and R ¿ Rc (power-law fits). Insets show cuts of 3D
kinetic Monte Carlo simulations (to be presented elsewhere) of
an fcc A50B50 alloy with ballistic exchanges of range R � 5�

p
2

lattice parameters [15].

are independent of the coefficient B, which only relates
to the amplitude a. The remaining expression involves
terms that cannot be obtained analytically, so we proceed
with a numerical strategy. The effective free energy per
unit length is then computed by numerical integration, and
the actual minimization is performed by means of the sub-
routine MNFB from Netlib [18], based on a secant Hessian
approximation. Figure 2 shows k versus g plots for a series
of values of R. The physical parameters A and C are set to
unity. From this plot we obtain the dependency of g1 and
the corresponding wave vector k1 (related to the maximum
attainable wavelength) as a function of R. A log-log plot
of these quantities (not shown) can be almost perfectly fit-
ted by the simple laws: g1 � 2�R3 and k1 � 1��2R�. The
latter relationship has the physical interpretation that R is
the parameter determining the maximum wavelength. Fur-
thermore, the combination of these two relationships yields
the well-known power law of the R ! ` case: k ~ g1�3.
For values of A and C not equal to 1, the corresponding de-
pendencies can be derived by dimensional analysis, giving
g1 � 2

p
AC�R3 and k1 � 1��2R�. Figure 3 summarizes

the steady-state regimes in the g-R space. Patterning may
occur in the present model when the range of the forced
exchanges exceeds a critical value, with a maximum wave-
length proportional to that range. In the case of alloys
under irradiation, typical R values range from 2 to 10 Å,
suggesting that patterns up to 100 Å could be stabilized.
For a fixed irradiation flux and by changing the tempera-
ture (which implies changing M), patterning must appear
just above the temperatures at which the system cannot
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be brought to a solid solution by ion-beam mixing. For
example, in the case of the Ag-Cu system, for irradiation
with 1 MeV Kr ions and a flux of 2.5 3 1013��cm2 s�, this
means a temperature in the range of 298–398 K [19]. Ex-
perimental work to test these predictions is in progress.
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