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Autoionization of Triply Excited Rydberg Series

Gilles Verbockhaven and Jørgen E. Hansen
Department of Physics and Astronomy, University of Amsterdam, Valckenierstraat 65, NL-1018 XE Amsterdam, The Netherlands

(Received 8 November 1999)

The Auger rates of triply excited Rydberg series are shown to behave rather differently from doubly
excited series. It is shown that in hollow atoms the Auger decay rates for Rydberg series of the type
2l2l0nl00 with n $ 2 are expected to be nearly independent of n, while for doubly excited series of the
type 2lnl0 the decay rate in general decreases with increasing n. In addition the ratio between the rates
for 2l2l0nl00 Rydberg series with different l00 values will be fixed and often the ratio will be equal to one.

PACS numbers: 31.50.+w, 32.80.Dz, 32.80.Hd
The study of Auger spectra of multiply excited atoms
and ions has been a very active area of research during the
last 20 to 30 years. This observation applies particularly
to doubly excited states while more systematic studies of
triply excited states is of fairly recent origin [1–5]. Studies
of nonradiative decays of triply excited states are still often
limited to the lowest states, although recently the first ob-
servation of the Rydberg series associated with such states
has been reported [6]. Most calculations have also been
limited to the lowest states although this situation is begin-
ning to change too [7,8]. In this Letter, we point out that
the decay properties of such states can be expected to be
different from the familiar behavior of doubly excited se-
ries. This is important, for example, in trying to untangle
the competition between radiative and nonradiative decay
for such states [9,10].

We begin with a short review of the theory of Auger
decay of doubly excited states in two-electron systems.
Auger decay usually means filling a single vacancy in the
core. Here we consider systems without a core and we use
the term Auger decay to mean the filling of one of the (pos-
sibly many) inner vacancies. We will restrict ourselves to
decay via the Coulomb interaction since this is the impor-
tant decay mechanism in light systems. The following will
also apply to doubly excited states outside closed shells in
many-electron systems. Consider the doubly excited 2lnl0

Rydberg series in He which lie between the n � 1 and
n � 2 limits. These states can decay only to the 1s limit
in He II with the emission of a continuum electron with
energy e and angular momentum � where the latter is de-
termined by parity and angular momentum coupling selec-
tion rules. The decay rate depends on a Coulomb factor
I�2lnl0, 1se�� where I stands for both direct and exchange
integrals and usually comprises several Rk integrals. In
addition I contains an angular factor (in practice one an-
gular factor associated with each Rk integral) determined
by the coupling conditions in the Rydberg series, but if the
Rydberg series is unperturbed this factor is the same for
all n values and the radial integrals in I determine the de-
cay rate as a function of n. Since the overlap between 2l
and nl0 will decrease with increasing n we expect that the
decay rates will decrease with n (roughly as n23 [11]).
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In practice this behavior can fairly easily be obscured, for
example, if Rydberg series perturb each other. Neverthe-
less, the gradual decrease in the Auger decay rate with in-
creasing n is a well-known property of the doubly excited
Rydberg series [12]. Note that possible nonorthogonali-
ties between initial and final state orbitals automatically
are taken into account for these states in the calculation of
the I factor.

Nonorthogonalities are not automatically included when
we consider triply excited states and since orthogonality
simplifies the analysis we will initially assume that ini-
tial and final state orbitals are orthogonal. In practice, as
we will see, this will often be a rather bad approximation.
Surprisingly, the assumption does not, it turns out, seri-
ously invalidate the analysis presented below, at least not
for 2l2l0nl00 series.

Consider a Rydberg series of the type 2s2p 3P nl 4L in
a three-electron system such as Li I. This series can be
considered to be built on the 2s2p 3P term in Li II, and
it lies above the ionization limit of Li II. This means that
there are an infinity of limits of the form 1sn0l0 3L available
for the Auger decay. However, the main conclusions of
this Letter rely on that most of the limits are inaccessible
in the approximation we have chosen. This follows from
the explicit expression for the decay rate which has three
parts of which

I�2s2p, 1se�� �nljn0l0� (1)

usually will be the largest and the essential point is that
Eq. (1) is zero unless n � n0 and l � l0. Therefore in
the orthogonal approximation, the Rydberg electron is a
spectator electron and the decay rate is approximately the
same for all values of n, being determined by the same
I�2s2p, 1se�� factor since e is roughly independent of n.
The two other contributions are decays in which one of the
2l electrons is the spectator and the only limits that can be
reached in these decays are therefore 1s2s 3S and 1s2p 3P.
The I factors associated with these two decay routes, for
example I�2pnl, 1se�� and I�2snl, 1se�� for the decay
of 2s2pnl, do contain the Rydberg electron. Therefore
these two contributions can be expected to be smaller
than Eq. (1) when n . 2. We note that one of these two
© 2000 The American Physical Society
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is the only contribution present for the more well-known
(doubly excited) 1s2lnl0 4L series, consistent with the
analysis of the difference between doubly and triply
excited series. Thus if n . 2, we assume in the following
that the decay rate is determined primarily by Eq. (1).
One practical consequence of this result is that, if the total
decay rate of the lowest member of a Rydberg series has
been determined, this value can serve as a first estimate
for the decay rates of the higher members.

A related so-called spectator model is well known for the
decay of innershell resonances [13,14] which have simi-
larities to the triply excited states we are considering here.
It has been found that the spectator model is in good accord
with the observations unless the Rydberg electron interacts
noticeably with the inner electrons [15] and the same can
be expected here.

Thus while it usually is possible in an Auger decay to
reach several final bound states of either parity, in this case
only one 1snl final state is possible in which both n and
l are fixed (in addition to 1s2s and 1s2p). That only one
state is available is linked to the fact that only one state, 1s,
is available for the decay of 2l2l0. Generalizing this result
we see, for example, that for the 3l3l0nl00 Rydberg series
more limits will be available, the number being determined
by the number of final state limits (1s, 2s, and 2p) that
can be reached from the doubly excited 3l3l0 state plus the
final states which become available when one of the 3l
electrons is the spectator.

Another consequence of Eq. (1) can be exemplified by
considering the 2s2p�3P�ns 4Po and 2s2p�3P�nd 4Po se-
ries assuming, as above, that the nl electron is the spec-
tator. Since the radial part of the I factor is the same for
these two decays, a possible difference in decay rate must
be due to the angular factor involved. Computation shows
that the angular factor is the same for the two series so that
we predict that the decay rate should be independent of l
in this case. We note that the same angular (and radial)
factors are involved in the decay of the 2s2pnd 4Do and
4Fo series, for example.

These predictions are based on a number of approxima-
tions which cannot be expected to be fulfilled very often
in real atoms. Nevertheless, we have found that at least for
2l2l0nl00 series some of the predictions can be expected to
be independent of the approximations and some examples
have, in fact, recently been established of Rydberg series in
Li I which do show fairly constant Auger rates. The results,
which will be described in more detail elsewhere [16], are
obtained using a B-spline-based configuration interaction
(CI) approach [17–19]. The calculations are nonrelativis-
tic, which is a good approximation for excited states in Li.
We emphasize that these calculations include a very con-
siderable amount of correlation. Therefore it is not a priori
obvious that a single-particle analysis is at all relevant.

In Tables I and II we show decay rates for
2s2p 3P nl 4Po series members where l can be s and d.
There is considerable mixing between the two series but
TABLE I. Total Auger decay rates (in meV) for the lowest
members of the triply excited 2s2pnl 4Po series in Li I (l � s
and d). Also the sum of the eigenvector components belonging
to the 2s2pnl series giving name to the term is shown (in %)
in the column “purity.” The column headed BN refers to values
published by Berrington and Nakazaki [8] obtained by including
only 1snl limits with n # 3, see text.

Decay rate
2s2p�3P�nl 4Po Purity Present BN

nl � 3s 93.3 9.95 8.6
3d 85.8 9.58 4.7
4s 87.0 9.62 1.0
4d 85.4 9.44 1.1
5s 86.2 9.44 0.4
5d 84.2 9.45 0.4
6s 84.8 9.44 0.3

the total widths of both series are found to be nearly
equal as well as roughly independent of n in agreement
with Eq. (1). Purities as well as total widths are shown
in Table I.

Table I includes also total widths from the recent paper
by Berrington and Nakazaki [8]. It is seen that there is
agreement with our results only for the lowest, 3s, term.
The reason is that Berrington and Nakazaki included only
1snl limits up to n � 3 and thus missed the contribution
from Eq. (1) except for 3s. It could be expected that their
result for 3d should be the same as ours too but we will
see shortly why this is not the case.

In Table II we show decay rates to 1sns 3S and to
1snd 3D limits with n # 6. We omit the term labels in
the following. The order of the entries in the tables is
determined by the energy of the series members, i.e., the
two series are intermixed. Also results for the decay to the
1s2p limit are included in Table II. This decay is due to
one of the two contributions we are neglecting in Eq. (1),
namely the contribution corresponding to the 2p electron
being a spectator. The neglect is seen to be fully justified
in this case. The decay to the 1s2s limit, in which 2s is
a spectator, is seen to be somewhat more probable but
still only about 10% of the contribution from Eq. (1) in
the most favorable case, if we assume that the decay rate
for 2s2p3s to 1s2s is due to this effect. The decay rate
decreases quickly with n as expected (Table II). Thus the
contribution to the total decay rate from this channel is
much smaller than 10% for higher n states.

The results confirm that Eq. (1) provides the main con-
tribution to the decay rate in this case, which means that the
nl series should decay preferentially to the 1snl limits and
Table II shows that this is followed quite well. With regard
to decay to the 1sns limits, Table II shows that the decay
rates for the nd series members are small except for the
decay of 2s2p3d, which is large to the 1s4s limit, while
the 2s2p4d decay is large to the 1s5s limit. This can be
explained by mixing between 2s2pnd and 2s2p�n 1 1�s.
In both cases the decay rate for the term called 2s2pnd is
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TABLE II. Auger decay rates (in meV) for the lowest members
of the triply excited 2s2pnl 4Po series in Li I to the limits 1snl
with n # 6 and l � s and d as well as to the 1s2p limit in
Li II. The notation a-b means a 3 10b .

2s2p�3P�nl 4Po Limit Decay rate Limit Decay rate

nl � 3s 1s2s 3S 1.170 1s2p 3P 0.044
3d 0.002 0.015
4s 0.301 0.013
4d 2.9–4 0.008
5s 0.125 0.009
5d 1.3–4 0.004

3s 1s3s 3S 7.98 1s3d 3D 0.180
3d 0.074 4.64
4s 0.208 0.188
4d 0.031 1.01
5s 0.037 0.077
5d 0.016 0.358

3s 1s4s 3S 0.549 1s4d 3D 0.004
3d 0.902 3.76
4s 5.33 0.834
4d 0.021 0.675
5s 0.871 0.009
5d 0.002 0.477

3s 1s5s 3S 0.011 1s5d 3D 2.1–5
3d 0.098 0.086
4s 2.63 0.105
4d 0.768 5.73
5s 1.98 0.734
5d 0.156 0.098

3s 1s6s 3S 0.003 1s6d 3D 2.4–5
3d 6.6–5 1.7–5
4s 2.4–4 7.5–5
4d 0.363 0.836
5s 4.98 0.415
5d 0.352 4.55

smaller than for the 2s2p�n 1 1�s partner. The opposite
behavior is found for the decay of the 2s2pnd series to
the 1snd limits. For the decay of the s series we expect
according to Eq. (1) a maximum for the limit with an n
value corresponding to the n value for the series member.
It can be seen that this prediction is valid up to n � 4
while 2s2p5s has its largest decay rate to the 1s6s limit.
Larger deviations are shown by the 2s2pnd series where
the n value of the initial state even for 3d does not unam-
biguously define the main final state. The reason is another
effect we have neglected so far namely the lack of orthogo-
nality between the orbitals in the initial and final states.

It has been known for some time [15,20–23] that the ex-
istence of an inner hole can have profound influence on the
orthogonality between initial and final state orbitals. This
is easily understood when it is considered that the 2s0 elec-
tron in the 1s2s0 limit (we use a prime to distinguish final
from initial state orbitals) sees the nuclear charge screened
by the 1s electron while the 2s electron in the 2s2pnl states
sees a basically unscreened nuclear charge. The screening
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depends on the particular case and for the cases shown in
Table II the orthogonality between the initial 2s and the fi-
nal 1s function is rather good. First for the initial 4s orbital
is there a large mixing, while the initial 5s has the expan-
sion 11:21:64:3 in terms of the final 4s0:5s0:6s0:7s0 orbitals.
The expansion coefficients correspond very closely to the
decay rates. For example, 2s2p5s decays to the limits
4s0:5s0:6s0:7s0 in the proportions 11:25:63:2 according to
Table II.

For the d series the lack of orthogonality is already im-
portant for the initial 3d orbital which can be expressed as
57:42 in final 3d0:4d0 orbitals. Berrington and Nakazaki
[8] included only the 1s3d0 limit in their calculation for
3d in Table I and, consequently, their calculated width is
only half of the expected value. The initial 4d orbital
has the expansion 13:8:68:10 in terms of 3d0:4d0:5d0:6d0.
Thus in this case the radial overlap �4dj4d0� is �0 as
previously observed in Ar I [15,23]. This nonorthogo-
nality is also observed in the calculated branching ratios
where the 2s2p4d decay shows the branching 13 :9:74:11
to 3d0:4d0:5d0:6d0, confirming the small overlap between
the 4d orbitals.

Chung and Gou [7] realized, for example, that “for reso-
nances such as 2s2s7p, the 1s7p 1 e� may be a very
important decay channel.” For this reason Chung and Gou
included, in addition to 1snl limits up to n � 3, also the
1snl00 limit in calculations of the total width for 2l2l0nl00

terms. However, we have shown that, except for the low-
est n values, the presence of nonorthogonalities means that
this is not enough since the 1s�n 1 1�l limit, for example,
may be more important than the 1snl limit. This means
that the total rates calculated by Chung and Gou [7] for
the higher terms are smaller than ours and that they, conse-
quently, could not observe the effect we are reporting here.
However, Chung and Gou studied only the 2Po series for
which the n independence anyway is less obvious [16].

Nonorthogonalities make additional limits possible.
Consider the 2s electron in the 2s2pnd series as the
spectator, then a nonzero �2sj1s� overlap will allow de-
cays such as 2s2pnd ! 1sn0le� where l can be arbitrary
except limited by the coupling and parity requirements in
the I�2pnd, n0le�� factor. As mentioned already, in the
present case �2sj1s� � 0 so such decays can be neglected.
Also �2pj2p0� � 1 and therefore the main consequence of
nonorthogonality is the behavior of the Rydberg electrons,
ns and nd, which we have discussed above.

The extension of the previous arguments to multiply ex-
cited states is fairly straightforward. That the Coulomb
interaction is a two-electron operator leads to the conclu-
sion that there will be several spectator electrons and the
decay rate can be approximated by a sum over decay rates
corresponding to a set of doubly excited states, where the
terms in the sum involving electrons with different n val-
ues will be small.

In conclusion, we have shown that in an orthogonal
approximation, triply excited Rydberg series of the form
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2l2l0nl00 will decay preferentially to one particular final
state namely 1snl00 and the decay rate will be independent
of n and often also of l00. In practice a large number of
effects could be expected to obscure this simple result, in
particular mixing between configurations and nonorthogo-
nalities, which, as we have seen, can be large when inner
electrons are missing in the initial state. However, when
total decay rates are considered the n and l00 independence
may show up anyway. This follows directly from that
there is only one decay route in the orthogonal approxi-
mation, since even when this amplitude is distributed over
a large group of levels via the nonorthogonalities there
is little possibility for interference so that the total width
will remain unchanged (Table I). For series for which the
l00 independence applies, also CI between the series has
little effect on the total rates as also demonstrated in
Table I. However, we note that this of course does not
mean that interference is absent between the direct and
the resonant photoionization channels in a photoionization
experiment. This effect has been observed and in fact
found to obscure the observation of Rydberg states in the
1snl channels [6].

Diehl et al. [5,6] have studied the decay of 2Po series
members and noticed that the partial cross sections, as pre-
dicted here, are very dependent on the initial state. Un-
fortunately the 2s2p�3P�nl 2Po and 2s2np 2Po series are
mixed together so that the 1snl series with l � p are pos-
sible as limits, in addition to l � s and d, complicating the
analysis for these series. However, we notice that Diehl
et al. [6] looked for the 2s2p�3P�ns series in the partial
cross section to 1s2s 3S while we predict that a more sen-
sitive approach would be to use the 1sns 3S limits (or per-
haps n 1 1 due to the orthogonality problem).

Finally, we notice that the preceding analysis has been
based essentially on a single particle picture modified in
particular by the orthogonality problem. In fact, the use of
the single particle picture to describe these strongly cor-
related states has been questioned. The observation of
Rydberg states can to some extent be taken as experimen-
tal proof of the usefulness of the single particle picture.
However, for 3l3l0nl00 series the number of interacting se-
ries will increase considerably and complicate the analysis
further so that the presence of Rydberg series in triply ex-
cited atoms should not be taken for granted.
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