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Resonant Instability of Laser Filaments in a Plasma
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The stability of nonlinear laser light filaments in a homogeneous isothermal plasma with respect to
coupled electromagnetic and density perturbations is examined. In addition to the previously known
modulational instability of a trapped electromagnetic mode, a new fast growing resonant instability is
found. It corresponds to the growth of an excited eigenmode in the waveguide formed by the filament
density depletion, the associated density response being supersonic and transversally localized. The
evolution of the instability is illustrated by numerical simulations in two and three spatial dimensions.
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The nonlinear evolution of randomized laser beams in
laser produced plasmas is of ongoing concern in inertial
confinement fusion studies and other applications of in-
tense laser pulses, including x-ray sources and laser par-
ticle accelerators. Beam smoothing techniques have been
designed to improve the uniformity of plasma illumina-
tion. They involve a random phase plate which breaks the
laser beam into many independent beamlets whose inter-
ference pattern in the laser focal spot creates an ensemble
of statistically independent speckles or hot spots. This im-
proves the large-scale uniformity of the intensity pattern,
but creates a speckle distribution with a significant number
of large intensity hot spots, many times above the average
value. These very intense small size hot spots give rise to
nonlinear effects, which can alter the properties of a laser
beam at a macroscopic level [1].

An individual hot spot evolves into a filament by form-
ing an elongated density channel with trapped light propa-
gating along its axis, provided that the laser light power
within a speckle is above the critical value for self-focus-
ing [2]. The equilibrium state of a nonlinear filament cor-
responds to a balance between the light ponderomotive and
plasma pressures. Equilibrium filaments have been exten-
sively discussed in the stationary approximation described
by the nonlinear Schrödinger (NLS) equation [3].

It has long been known [4] that the validity of the sta-
tionary approximation is limited by a modulational insta-
bility, which involves the dynamical ion wave response.
Modulational instabilities are nonresonant, involve long
wavelength spatial perturbations, and develop on the cor-
responding long ion-acoustic time scale. Recent three di-
mensional simulations [5] have shown a new instability
of a single nonlinear filament, which resulted in its total
destruction on a much shorter time scale. This violent in-
stability is analyzed in the present paper.

We explain the destruction of a filament by a new kind
of resonant parametric instability, in which the fundamen-
tal mode of the waveguide formed by the filament den-
0031-9007�00�84(2)�278(4)$15.00
sity depletion is coupled to an excited eigenmode of this
waveguide. This coupling involves a supersonic density
response and displays similarities to strongly driven for-
ward stimulated Brillouin scattering (SBS). However, con-
trary to forward SBS of plane waves or broad laser beams,
the instability in a filament involves transversally local-
ized modes and is characterized by a sharp maximum in
the growth rate as a function of the wave number. This
well-defined resonant wave number of the perturbation en-
ables identification of the instability in simulations as well
as allowing experimental verification.

Basic equations and stationary solutions.—The linearly
polarized electromagnetic wave field, E is enveloped in
space and time, Ey � Re�E expi�k0z 2 v0t��, where v0

is the laser frequency, k0 � �v0�c�
p

1 2 n0�nc and n0,
nc are the homogeneous background plasma density and
critical density, respectively. Writing the total electron
density ne as ne � n0�1 1 n�, the dynamical evolution of
the perturbation n and of the electric field amplitude E is
described in the paraxial approximation by the following
system of equations:

�i≠z 1 iV21
0 ≠t 1 =2

��E � nE ,

�≠2
tt 2 =2

�� ln�1 1 n� � =2
�jEj2,

(1)

where V0 � vpe�2k0cs is the dimensionless electro-
magnetic wave group velocity and vpe is the electron
plasma frequency. The wave amplitude E is normalized top

16pncTe, the coordinate z in the propagation direction
is normalized to 2k0c2�v2

pe, the radial coordinate is nor-
malized to the electron inertial length c�vpe, and time is
measured in units of c�csvpe, where cs is the ion acoustic
velocity. The logarithmic term in the acoustic equation
accounts for the saturation of the density response, and is
necessary for the formation of equilibrium filaments.

Equilibrium solutions, E � Eeq exp�ilz�, to Eqs. (1)
can be found by solving an eigenvalue problem for the NLS
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equation, L̂Eeq � lEeq, where L̂ � =
2
� 2 neq�jEeqj

2�,
and neq � 21 1 exp�2jEeqj

2� is the equilibrium density
perturbation. Localized, axially symmetric solutions
exist for 0 , l , 1. The limit l ! 0 corresponds to
the self-focusing threshold where the trapped power,
P � 2

R
rdrjEeqj

2, equals the critical power, Pc � 3.72
[2,3]. The density perturbation neq represents a potential
well for the electromagnetic wave, and 2l defines the
ground state energy level. A sufficiently deep potential
well also admits excited states, which are solutions to
the linear Schrödinger equation, L̂dE � l̃dE, for the
electric field perturbation dE in the given density channel
neq. These excited states, if present, can lead to a fast
growing instability of the ground state.

Stability analysis of an equilibrium filament.—Consider
solutions to the linearized Eqs. (1) describing the per-
turbations from the equilibrium state: E � �Eeq 1

dE� exp�ilz� and n � 21 1 �1 1 dN� exp�2jEeqj
2�.

Introducing an explicit dependence on the axial coordi-
nate, azimuthal angle, and time, �dN, RedE� � Re��N ,
ER� exp�imf 1 Gt 2 iqz��, ImdE � Im�EI exp�imf 1

Gt 2 iqz��, one finds the following system of eigenmode
equations:

�L̂m 2 l�ER 2 �q 2 iG�V0�EI � �1 1 neq�EeqN ,

�L̂m 2 l�EI 2 �q 2 iG�V0�ER � 0 , (2)

�G2 2 L̂m 2 neq�N � 2�L̂m 1 neq�EeqER ,

where L̂m � �1�r�≠rr≠r 2 m2�r2 2 neq.
The system (2) admits unstable solutions correspond-

ing to the hoselike modulational instability in the long
wavelength limit, q ø l. From the analysis of Ref. [5],
one obtains the dispersion relation for the mode m � 1:
G2 � A2q2 where A � 1�

p
2l in the limit of a small am-

plitude filament, l ø 1. This leads to an estimate of the
maximum growth rate, Gmax 	

p
l, for q & l.

A much faster growing supersonic instability can be
found in the wavelength domain q & l, in the presence
of another trapped electromagnetic mode within the equi-
librium density channel neq. It follows from the third equa-
tion of (2) that the density perturbation is small in the large
growth limit, jGj ¿ 1. Neglecting N in the first equa-
tion of (2) one obtains, in the first order approximation,
a system of two equations for the electromagnetic wave
amplitudes

�L̂m 2 l�E�1�
R,I 2 qresE

�1�
I ,R � 0 . (3)

These are eigenvalue equations for the resonance wave
number qres, which corresponds to an excited eigenmode
of the waveguide formed by the filament density deple-
tion. Localized solutions require 0 , qres , l, since l

corresponds to the ground state. The eigenvalue analysis
of Eqs. (3) for m � 1 shows that there is no eigenstate
other than the fundamental mode when l , 0.41 (i.e.,
P & 3Pc), and there is an eigenstate l1 � l 2 qres for
filaments with larger intensity. By comparison, there
is no threshold value for the antisymmetric mode in
the two dimensional case often considered in simula-
tions. The dependence of the eigenvalue l1 on P�Pc is
shown in Fig. 1a. The eigenmode E

�1�
R �r� for l � 0.5

(P�Pc � 4.24) is shown in Fig. 1b. Higher excited levels
appear in much more intense filaments. Levels with
m � 0 (the mode with one node) and m � 2 exist for
l * 0.75 (P�Pc * 18.7), the next level m � 1 appears
for l * 0.8 (P�Pc * 30.2), and so on. We limit our
discussion to the lowest excited level.

In the second order approximation the density perturba-
tion follows from the third equation of (2):

N �2� � �2�rG2� �≠rr≠r 2 1�r�EeqE
�1�
R

and leads to a second order equation for the electric field
assuming a small deviation Dq � q 2 qres from the res-
onance value. Since L̂1 is a self-adjoint operator, the dis-
persion equation is obtained by integrating a product of
the second order equation and the first order eigenfunc-
tion with respect to a radial coordinate. This is G2�Dq 1

iG�V0� � B, where
B �

µZ `

0
r dr�E�1�

R �2

∂21 Z `

0
r dr�1 1 neq�

∑
1
2

≠rE2
eq≠r�E�1�

R �2 1 �2l 2 qres 1 2neq�E2
eq�E�1�

R �2

∏
.

The parameter B keeps relatively small values, jBj &

0.1, as a function of P�Pc, as shown in Fig. 1a. It changes
sign from negative to positive for P�Pc � 9 (l � 0.64).
The maximum growth rate of the instability,

Gmax � �1�2� �
p

3 2 iB�jBj� �jBjV0�1�3, (4)

corresponds to Dq � 0. The width of the resonance,
Dqres 	 �jBj�V 2

0 �1�3, is rather narrow for typical values
of V0 	 103.

The system (2) also has been solved numerically by
using either a shooting method or by expanding the
eigenfunctions in a series of �m 2 1�2� order Laguerre
polynomials and computing the eigenvalues of the result-
ing matrix. Both methods produce the same results, the
polynomial expansion being more robust and stable. Ten
to twelve polynomials are sufficient to find the growth
rate with an accuracy better than a few percent. A similar
polynomial expansion has been used in the study of the
hose instability of a short laser pulse within a plasma
channel [6]. The results of Ref. [6] describing short pulse
modulations involving fast electron response, Refs. [6,7],
are similar to ours.

The dependence of the instability growth rate on wave
number is shown in Fig. 1c for P�Pc � 4.24. The nu-
merically calculated growth rate is in agreement with the
analytical results presented above. There is no instability
for short wavelengths corresponding to q . qres.
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FIG. 1. (a) Dependence of the excited level l1 in the filament
and the coupling coefficient B (magnified 10 times) for the reso-
nance instability on the filament power, P�Pc. (b) Radial profile
of the eigenfunction of the excited state m � 1 for P � 4.24Pc.
(c) Dependence of the instability growth rate on the perturbation
wave number for m � 1, P � 4.24Pc, and qres � 0.46.

In physical units the growth rate (4) can be written
as G � jBj1�3v

1�3
0 �vpecs�c�2�3, which is comparable to

the growth rate for backward SBS in the strong coupling
limit, and, therefore, is much larger than the maximum
forward SBS growth rate for a homogeneous pump wave.
In contrast with forward SBS, the large value of the
growth rate found here is due to the lack of dependence on
the small ratio k��k0 , 1, where k� is the wave number
of the ion acoustic wave participating in the forward
SBS. In our case the short scale density perturbation is
provided by the relatively small unstable filament radius,
a0 	 2c�vpe.

Numerical simulations of a single filament instabil-
ity.—We have performed numerical simulations in two
and three dimensional geometry using the nonparaxial
wave interaction code [8] and the quasiparaxial code
F3D [9]. In both codes the backward SBS is artificially
suppressed by either strongly damping the SBS resonant
ion-acoustic wave or by not solving the equation for
the back-propagating wave. The results from the 2D
nonparaxial code are presented in Fig. 2; the 3D results
are similar and will be reported elsewhere.

Simulations start with a Gaussian laser beam being fo-
cused in the plasma and show the formation of nonlinear
280
FIG. 2. Intensity contours and angular distributions of trans-
mitted light at t � 14.5 ps (a), 18.2 ps (b), and 21.8 ps (c). At
time t � 0 ps the 1 mm Gaussian beam has been focused in the
center of the simulation box 100 3 160 mm2 with maximum
intensity 1.46 3 1015 W�cm2 and FWHM 6 mm. The plasma
parameters are n0�nc � 0.4 and Te � 1 keV.

filaments which are similar to the equilibrium NLS so-
lutions described before. Figure 2 demonstrates contours
of light intensity in the interaction region at three differ-
ent time moments illustrating filament formation, Figs. 2a
and 2b, and the subsequent filament destruction, Fig. 2c.
To the right of the intensity contour plots, far field images
are shown for the same time moments. They display angu-
lar distributions of the transmitted light intensity. During
the filament formation phase, angular distributions corre-
spond to interference patterns of the coherent light emitted
from the narrow structure which is created by the plasma
density channel. The coherent pattern disappears, Fig. 2c,
after rapid growth of the instability and filament disinte-
gration. This is one of the signatures of plasma induced
laser beam smoothing which is greatly enhanced by the in-
stability of filaments.

The instability takes place at a time of 18–19 ps, and it
is characterized by a fast growth rate, comparable with the
theoretically found value of Gmax � 1.2 ps21. A modula-
tion period of about 20 22 mm in Figs. 2b and 2c in the
propagation direction is also in agreement with the results
of linear theory, Eq. (4), giving 2p�qres � 20 mm. In-
tensity maxima and their location away from the laser axis
in Fig. 2c (	2 mm) correspond to the resonantly excited
antisymmetric mode shown in Fig. 1b. Electric field
phases differ by 180± at these maxima, i.e., at x � 75 mm
and x � 110 mm.
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Numerical simulations have shown that the instability is
effectively destroying the filament. The interference be-
tween the fundamental mode and the excited modes pro-
duces a ponderomotive pressure which does not support
the original density channel due to the complicated inten-
sity pattern, Fig. 2c. Because of this instability, the light
is detrapped and propagates in a wide interaction region.

Nonlinear filaments are formed over a relatively long
time period, which equals the acoustic propagation time
across the initial laser beam (18 ps in present simulations).
It is therefore apparent that filament formation can oc-
cur without being interrupted by the resonant instability,
in spite of the very short instability growth time. On the
other hand, the solution to the eigenmode equation (2) in-
dicates that the resonant instability cannot take place if
the depth of the density channel is unsufficient to sup-
port an excited eigenmode. The necessary depth must be
of the order of 90% of the density perturbation observed
in the equilibrium filaments. This result explains both
the relatively long time of filament formation and its fast
disruption.

The dynamical evolution of a single filament pro-
duces a redshift in the transmitted light spectrum as
shown in Fig. 3. An increasingly redshifted com-
ponent corresponds to a time dependent phase shift,
F �

R
kzdz, of the electromagnetic wave propagating

in a deepening density channel. This frequency shift,
dv � 2≠F�≠t � �k0L�2nc�≠n�≠t, characterizes the
initial filament formation phase and continues until a time
of 14 ps, when the channel formation slows down and
the instability takes over. The maximum value of the
redshift, 	1.5 2 nm, is many times above the magnitude
which forward SBS could produce within the direction of
propagation shown in Fig. 2. The density perturbations
remaining after filament destruction propagate in the
plasma, further enhancing the angular spread of the
transmitted light (Fig. 2c) and forward SBS.

Conclusions.—The resonant instability of nonlinear
filaments can play an important role in plasma induced
beam smoothing effects and in turn in reducing the
reflectivity of backward scattering instabilities. Long
duration numerical simulations have shown quasiperiodic
behavior after the initial explosion of the filament. The
subsequent nonlinear evolution results in a smaller size of
the secondary filaments, and the latter contain less power
due to the dephasing effect produced by the remaining
density fluctuations. The same fluctuations enhance for-
ward SBS and the redshifted component of the transmitted
light spectrum. Extrapolating the evolution of a single
filament to the case of a multispeckle beam, one expects
a reduction of the effective f-number and an increase in
the temporal bandwidth of the transmitted light due to
multiple laser filament disruptions. Such a behavior has
been observed in recent large scale simulations in cases
where the average speckle power is above the critical
FIG. 3. Frequency spectrum of the transmitted light, which has
been calculated within the window of 6 ps at different moments
of time. Frequency is given in units of k0cs � 1 ps21 which
corresponds to the wavelength shift of 0.57 nm.

value for self-focusing. The instability of filaments could
also be responsible for changes in the hot spot statistics
by effectively destroying high power filaments.
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