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Gravity in the Randall-Sundrum Brane World
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We discuss the weak gravitational field created by isolated matter sources in the Randall-Sundrum
brane world. For the case of a single wall of positive tension, the field stays localized near the wall if the
source is stationary. We calculate the leading Kaluza-Klein corrections to the linearized gravitational field
of a nonrelativistic spherical object, which is different from the Schwarzschild solution at large distances.
In the case of two branes of opposite tension, linearized Brans-Dicke (BD) gravity is recovered on either
wall, with different BD parameters. On the wall with positive tension the BD parameter is larger than
3000 provided that the separation between walls is larger than 4 times the AdS radius. The gravitational
field due to shadow matter is also considered.

PACS numbers: 04.50.+h, 11.10.Kk, 98.80.Cq
It has recently been shown [1] that something very simi-
lar to four-dimensional Einstein gravity exists on a domain
wall (or 3-brane) of positive tension which is embedded in
a five-dimensional anti–de Sitter space (AdS). The strik-
ing feature about this model is that an effective dimen-
sional reduction occurs without the need of compactifying
the fifth dimension. The reason is that “Kaluza-Klein”
(KK) excitations, which have nonvanishing momentum in
the fifth direction, are suppressed near the brane. Thus,
even though the KK modes are light, they almost decou-
ple from matter fields—which are constrained to live on
the wall. Gravitational interactions among matter fields
are mediated predominantly by the “zero mode,” which is
often described as a bound state of gravity on the wall.
The case of two parallel domain walls, one with positive
tension and another with negative tension, has also been
discussed in an attempt to solve the much debated hierar-
chy problem [2]. The possibility that we may be living in
a brane is rather tantalizing, and many questions arise as
to how gravity should look in such a world. What are the
corrections to Einstein gravity? How does the “shadow”
matter living in the other brane gravitate upon us? What
is the final state of gravitational collapse? Exploring some
of these aspects will be the subject of the present paper.

Some attention has been devoted to cosmological [3,4],
as well as nonperturbative vacuum solutions [5,6] in this
context. In Randall and Sundrum’s solution the metric in-
duced on the brane is flat. However, straightforward gen-
eralizations can be obtained in which the induced metric
is any vacuum solution of the four dimensional Einstein’s
equations. Generalizations of this sort were given in [5]
and [6], where the plane wave and the Schwarzschild so-
lutions were considered. In these solutions, the metric on
every spacetime slice parallel to the brane is the same as
the metric on the brane, just rescaled by the AdS confor-
mal factor. Thus, the gravitational field extends all the way
to the AdS horizon, at infinite distance from the brane. In
the Schwarzschild case, the five-dimensional solution is a
0031-9007�00�84(13)�2778(4)$15.00
black string hidden behind a “cylindrical” horizon extend-
ing to infinity. As shown by Chamblin et al. [6] tidal forces
felt by freely falling observers actually become infinite as
the AdS horizon is approached, which is not very satisfac-
tory from the physical point of view. However, it was ar-
gued that since the infinite cylindrical horizon is unstable,
the final state of collapse would perhaps have a horizon in
the shape of a cigar (rather than a full infinite cylinder).

Although some intuition can be drawn from the previ-
ous examples, it would be interesting to find physical solu-
tions where the gravitational field stays localized near the
sources. For this purpose, an analysis of the weak gravita-
tional field created by isolated matter sources on the brane
seems to be the best starting point. Let us begin with the
case of a single membrane of positive tension embedded
in five-dimensional AdS space. The metric is given by

ds2 � gabdxadxb � dy2 1 a2� y�hmndxmdxn . (1)

Here, a� y� � e2jyj��, where � is the curvature radius of
AdS, and hmn is the Minkowski metric in four dimensions.
The cosmological constant on the bulk is given by L �
26�22 and the wall tension is given by s � 3�4p�G5,
where G5 is Newton’s constant in five dimensions.

Denoting the perturbed metric by g̃ab � gab 1 hab , the
Randall-Sundrum (RS) gauge is defined by

h55 � hm5 � 0, h n
m ,n � 0, hm

m � 0 . (2)

It is possible to show that these conditions can be chosen
everywhere in the bulk [7]. In this gauge, the equations of
motion take the simple form

�a22��4� 1 ≠2
y 2 4�22� hmn � 0 . (3)

The advantage of this gauge is that all components of
the metric are decoupled. However, in general, when we
choose the gauge (2) in the bulk, the brane will not be lo-
cated at y � 0. Instead, as we shall see, its location will
be given by y � 2ĵ5�xm� (see Fig. 1), where ĵ5 is the
© 2000 The American Physical Society
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solution of the equation

��4�ĵ5 �
k

6
T . (4)

Here T � T
m
m, and k � 8pG5. In our definition of Tmn

we are not including the contribution from the wall it-
self. To proceed, it will be convenient to go momentarily
to Gaussian normal coordinates, which we denote by x̄a.
By definition, the wall is located at ȳ � 0, and we have
h̄55 � h̄m5 � 0. Gaussian coordinates are also interesting
for us because h̄mn� ȳ � 0� is the metric perturbation in-
duced on the wall. We impose even parity under ȳ ! 2ȳ,
and we shall work on the positive side in the following
discussion. Then, the junction condition on the extrin-
sic curvature at the wall requires that ≠y�gmn 1 h̄mn� �
2�k�3� �s�gmn 1 h̄mn� 1 3Tmn 2 Tgmn�, which implies

�≠y 1 2�21�h̄mn � 2k

µ
Tmn 2

1
3

gmnT

∂
,

� ȳ � 01� . (5)

Here gmn � e22jyj��hmn is the background spatial metric.
The condition (5) can now be expressed in the RS gauge.
Since h55 and h5m vanish in both gauges, the most general
transformation between them must take the form

j5 � ĵ5�xr� ,

jm �
2�

2
gmnĵ5�xr�,n 1 ĵm�xr� , (6)

where ĵ5 and ĵm are independent of y, and for the moment
we are not assuming the condition (4). From the gauge
transformation equations

hmn � h̄mn 2 �ĵ5
, mn 2 2�21gmnĵ5 1 gr�mĵ

r

,n� , (7)

the junction condition (5) becomes

�≠y 1 2�21�hmn � 2kSmn , � y � 01� , (8)
where we have introduced the combination

Smn �

µ
Tmn 2

1
3

gmnT

∂
1 2k21ĵ5

,mn . (9)

This combination, which in some sense includes the “bend-
ing” of the wall ĵ5, will play the role of the source term
in the RS gauge.

Our solutions must be even under parity, and so from
(8) the derivative of the metric perturbation will be discon-
tinuous at the wall. Combining (8) with (3), the equations
of motion in the RS gauge become
�a22��4� 1 ≠2
y 2 4�22 1 4�21d� y��hmn � 22kSmnd� y� , (10)

where the delta function terms will enforce the discontinuities. Of course, in order to solve (10), we must first determine
the function ĵ5, which enters in the definition of the source term S. This function is given by (4), as we shall now
explain. Let us define the 5D retarded Green’s function, which satisfies

�a22��4� 1 ≠2
y 2 4�22 1 4�21d� y�� GR�x, x0� � d�5��x 2 x0� . (11)

The formal solution of (10) is then given by

hmn�x� � 22k
Z

d4x0GR�x, x0�Smn�x0� , (12)

where integration is taken over the y � 0 surface. Since h
m
m must vanish, we must impose S

m
m � 0, which implies

the “equation of motion” (4) for ĵ5. With this choice of ĵ5, it is easy to check that hmn given by Eq. (12) satisfies the
harmonic condition h n

m ,n � 0.
The behavior of hmn at infinity is determined by the form of GR�x, x0�. The Green’s function can be constructed from

a complete set of eigenstates in the usual way. Following [1], we have

GR�x, x0� � 2
Z d4k

�2p�4 eikm�xm2x0m�

"
a� y�2a� y0�2�21

k2 2 �v 1 ie�2 1
Z `

0
dm

um� y�um� y0�
m2 1 k2 2 �v 1 ie�2

#
, (13)
where the first term corresponds to the zero mode and
the rest corresponds to the continuum of KK modes
um� y� �

p
m��2 �J1�m��Y2�m��a� 2 Y1�m��J2�m��a��

�
p

J1�m��2 1 Y1�m��2. For the stationary case, it is
more illustrative to consider the Green’s function for the
Laplacian operator, which is related to the previous one
through

G�x, y, x0, y0� �
Z `

2`
dt0GR�x, x0� . (14)

Here x are spatial Cartesian coordinates on the wall. When
both points are taken on the wall ( y � y0 � 0), we have

G�x, 0, x0, 0� �
21

4p�r

∑
1 1

�2

2r2 1 ...

∏
, (15)
where r � jx 2 x0j. Also, when one of the points is on
the wall, the leading behavior for large separations in any
direction is given by

G�x, y, x0, 0� � 2
a3

8p�

2a2r2 1 3�2

�a2r2 1 �2�3�2 . (16)

This means that the metric perturbation decays rather
steeply towards the AdS horizon at y ! `, i.e., a ! 0
(in fact even the relative metric perturbation hmn�a2 falls
to zero as we move from the source). The behavior is
illustrated in Fig. 1.

Since we are interested in the metric on the wall, it is
convenient to transform back to Gaussian coordinates.
From (7), we have h̄mn � h�m�

mn 1 h�j�
,mn 1 �ĵ5

,mn 1

2�21gmnĵ5 2 ĵ�m,n�, where we decomposed hmn into
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the part corresponding to the matter fields and the part
corresponding to the wall displacement,

h�m�
mn � 22k

Z
d4x0GR�x, x0�

µ
Tmn 2

1
3

gmnT

∂
�x0� ,

(17)

h�j� � 24
Z

d4x0GR�x, x0�ĵ5�x0� . (18)

Setting y � 0 and choosing ĵm appropriately, we end up
with the rather simple expression

h̄mn � h�m�
mn 1 2�21gmnĵ5 , (19)

which gives the metric perturbation on the wall.
(i) Spherical symmetry.—As a simple application, let

us now consider the effect of the KK modes on the metric.
We shall restrict attention to the most interesting case of
a static and spherically symmetric source, as this may be
related to the final stage of gravitational collapse. With
our assumptions, the energy momentum tensor can be writ-
ten as

Tmn � r�r�umun .

From (18) with the aid of (4), we obtain

h�j� �
4
3

Z r

0

dr 0

r 0 2

Z r 0

0
dr 00r 00 2V �r 00� , (20)

where V � �k�2�
R

G�x, x0�r�x0� d3x0. Then, from (12),
we have

h00 � 2
8
3

V �r� , hrr � 2
8

3r3

Z r

0
dr 0r 0 2V �r 0� .

(21)

The remaining metric components can be found from the
requirement that h � 0 plus spherical symmetry. Notice
that the fall-off properties of the metric components at
y ! ` are the same as those for the Green’s function (16).
Hence the field decays quite steeply away from the wall.
It can be checked that the perturbation of the square of the
Riemann tensor behaves as

FIG. 1. Gravitational field of a spherically symmetric static
source in the Randall-Sundrum gauge.
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°
RmnrsRmnrs

¢
~ a2,

at large y (uniformly for all values of r .) For comparison,
the same quantity behaves as M2a2�ar�26 in the case of
the Schwarzschild black string [6].

In order to find the metric on the brane, we transform
to Gaussian normal coordinates. When the point is outside
the source, we have

V � 2
kM

8p�r

µ
1 1

�2

2r2

∂
, ĵ5 �

kM
24pr

, (22)

where M �
R

d3xr is the total mass. Using (19), we
arrive at the result

h̄00 �
2GM

r

µ
1 1

2�2

3r2

∂
,

h̄ij �
2GM

r

µ
1 1

�2

3r2

∂
dij .

(23)

It should also be stressed that the Newtonian potential
h̄00�2, which determines the attraction of neighboring bod-
ies, is not the same as V —which is just proportional to
the Green’s function G�x, 0�. The coefficient in front of
the correction �2�r2, due to the KK modes, is different in
both cases, because ĵ5 is in some sense four dimensional
and contributes only to the zero mode.

Our solution differs from the weak field limit of the usual
four-dimensional Schwarzschild solution. This seems to
indicate that gravitational collapse of matter on the wall
will not lead to a Schwarzschild black hole, but to a metric
which has the asymptotic form of the weak field solution
(23) [8].

(ii) Zero mode truncation.—In general, in order to ob-
tain the metric perturbation induced on the brane, we must
first solve Eq. (4) for ĵ5, feed the solution into Eq. (10)
for hmn , and then use the gauge transformation (7) to
obtain h̄mn . The expectation is that this should reproduce
the results of linearized Einstein gravity with some small
corrections. Let us now show that, indeed, in the case
of a single brane the zero mode truncation of the five-
dimensional theory coincides with the usual linearized
four-dimensional gravity.

If both arguments of the two-point function are on the
wall, then GR�x, x0� is dominated by the zero mode con-
tribution, GR�x, x0� � d�4��xm 2 xm0�����4�. Substituting
in (17), we find that the induced metric on the wall is given
by

h̄mn � 216pG
1

��4�

µ
Tmn 2

1
2

gmnT

∂
, (24)

where G � �21G5 is the four-dimensional Newton’s con-
stant. Thus, we recover the linearized Einstein’s equations.

It should be noted, however, that a happy cancellation
has occurred: the factor 1�3 in Eq. (17) has turned into the
familiar 1�2 in the process of going to Gaussian normal
coordinates (that is, absorbing ĵ5) through Eq. (19). As
we shall see, this cancellation does not occur in the case
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when we have two branes, which leads of course to some
interesting consequences.

(iii) Two branes and light deflection.—In the case when
we have two branes, one with positive tension at y � 0 and
a second one at y � d with negative tension, the previous
arguments can be repeated without any basic formal alter-
ations. The only differences are that the normalization of
the zero mode changes by a factor of �1 2 e22d��� and,
more important, the effect of the “Goldstone” mode ĵ5

does not cancel out. Following the steps of the derivation
given above, we find that in the zero mode approximation
the gravitational field on each of the branes satisfies [9]

µ
1
a2 ��4�h̄mn

∂�6�
� 2

X
s�6

16pG�s�
µ
Tmn 2

1
3

gmnT

∂�s�

6
16pG�6�

3
sinh�d���

e6d��
gmnT �6� ,

(25)

where the plus and minus refer to quantities on the wall
with positive and with negative tension, respectively. Here,
we have introduced

G�6� �
G5�21e6d��

2 sinh�d�l�
, (26)

which plays the role of Newton’s constant in a Brans-
Dicke (BD) parametrization (we follow the conventions of
Ref. [10]).

Strictly speaking, this parametrization holds when “the
other” wall (the one in which we do not live) is empty.
Let us first consider this situation. In this case, the BD
parameter is given by

v
�6�
BD �

3
2

�e62d�l 2 1� . (27)

Observations require that vBD . 3000 [10]. In the posi-
tive tension brane, this is achieved with d�l . 4, and we
have an acceptable gravity theory even without stabilizing
the dilaton. In the negative tension brane, we find that the
BD parameter is always negative but greater than 23�2.
In the Einstein frame, the kinetic term for the BD field has
the usual sign for vBD . 23�2. This suggests that the
system of two branes is well behaved in spite of the nega-
tive tension in one of the branes.

Now, let us consider the effect of “shadow” matter,
which lives on the other membrane. This appears only
in the first term in (25). Hence, for nonrelativistic matter,
and assuming spherical symmetry, its contribution to the
Newtonian potential h̄00 will be twice as large as its con-
tribution to any of the diagonal spatial components, say
h̄zz . This is in contrast with the situation in Einstein’s the-
ory, where the contribution to the Newtonian potential is
the same as the contribution to h̄zz . For a source in the
x, y plane, the deflection of a light ray traveling in the y
direction is given by ẍ � �1�2� �h̄00 1 h̄yy�,x . Therefore,
for the same Newtonian mass, the deflection of light rays
caused by shadow matter is 25% smaller than that in Ein-
stein gravity. It would be interesting to investigate this
possible effect in an astrophysical context. This is left for
future research.
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and ĵ5 � �ĵm
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