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Topology and Phase Transitions: Paradigmatic Evidence
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We report upon the numerical computation of the Euler characteristic x (a topologic invariant) of the
equipotential hypersurfaces Sy of the configuration space of the two-dimensional lattice w4 model. The
pattern x�Sy� versus y (potential energy) reveals that a major topology change in the family �Sy�y[�

is at the origin of the phase transition in the model considered. The direct evidence given here—of the
relevance of topology for phase transitions—is obtained through a general method that can be applied
to any other model.

PACS numbers: 05.70.Fh, 02.40.–k, 64.60.– i
Suitable topology changes of equipotential submani-
folds of configuration space can entail thermodynamic
phase transitions. This is the novel result of the present
Letter. The method we use, though applied here to a
particular model, is of general validity and it is of prospec-
tive interest to the study of phase transitions in those sys-
tems that challenge the conventional approaches, as might
be the case of finite systems (like atomic and molecular
clusters), of off-lattice polymers and proteins, of glasses,
and in general of amorphous and disordered materials. Let
us begin by giving a theoretical argument and then pro-
ceed by numerically proving its truth for the 2D lattice w4

model. Consider classical many particle systems described
by standard Hamiltonians
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where the �p, q� � �p1, . . . , pN , q1, . . . , qN � coordinates
assume continuous [1] values and V �q� is bounded below.
The statistical behavior of physical systems described by
Hamiltonians as in Eq. (1) is encompassed, in the canoni-
cal ensemble, by the partition function in phase space
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where the last term is written using a co-area formula [2],
and y labels the equipotential hypersurfaces Sy of configu-
ration space, Sy � ��q1, . . . , qN � [ �N jV �q1, . . . , qN � �
y�.

Equation (2) shows that for Hamiltonians (1) the
relevant statistical information is contained in the canoni-
cal configurational partition function ZC

N �
R

P dqi 3

exp�2bV �q��. Remarkably, ZC
N is decomposed—in

the last term of Eq. (2)—into an infinite summation
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of geometric integrals,
R

Sy
ds�k=Vk, defined on the

�Sy�y[�. Once the microscopic interaction potential
V �q� is given, the configuration space of the system
is automatically foliated into the family �Sy�y[� of
these equipotential hypersurfaces. Now, from standard
statistical mechanical arguments we know that, at any
given value of the inverse temperature b, the larger the
number N of particles the closer to Sy � Sub

are the
microstates that significantly contribute to the averages—
computed through ZN �b�—of thermodynamic observ-
ables. The hypersurface Sub

is the one associated with
ub � �ZC

N �21
R

Pdqi V �q�e2bV �q�, the average potential
energy computed at a given b. Thus, at any b, if N is
very large the effective support of the canonical measure
shrinks very close to a single Sy � Sub

. Hence, and on
the basis of what we found in [3–5], let us make explicit
the following hypothesis.

Topological hypothesis.—The basic origin of a phase
transition lies in a suitable topology change of the �Sy�,
occurring at some yc. This topology change induces the
singular behavior of the thermodynamic observables at a
phase transition.

By change of topology we mean that �Sy�y,yc are not
diffeomorphic to the �Sy�y.yc [6]. In other words, the
claim is that the canonical measure should “feel” a big and
sudden change—if any—of the topology of the equipo-
tential hypersurfaces of its underlying support, the con-
sequence being the appearance of the typical signals of
a phase transition, i.e., almost singular (at finite N) en-
ergy or temperature dependences of the averages of ap-
propriate observables. The larger N , the narrower is the
effective support of the measure and hence the sharper can
be the mentioned signals, until true singularities appear in
the N ! ` limit. This point of view has the interesting
consequence that—also at finite N —in principle different
mathematical objects, i.e., manifolds of different cohomol-
ogy type, could be associated to different thermodynamical
phases, whereas from the point of view of measure theory
[7] the only mathematical property available to signal the
© 2000 The American Physical Society
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appearance of a phase transition is the loss of analyticity of
the grand-canonical and canonical averages, a fact which
is compatible with analytic statistical measures only in the
mathematical N ! ` limit.

In order to prove or disprove the conjectured role of
topology, we have to explicitly work out adequate infor-
mation about the topology of the members of the fam-
ily �Sy�y[� for some given physical system. Below it
is shown how this goal is practically achieved by means
of numerical computations. As it is conjectured that the
counterpart of a phase transition is a breaking of diffeo-
morphicity among the surfaces Sy , it is appropriate to
choose a diffeomorphism invariant to probe if and how the
topology of the Sy changes as a function of y. This is a
very challenging task because we have to deal with high-
dimensional manifolds. Fortunately a topological invari-
ant exists whose computation is feasible, yet demands a
big effort.

This is the Euler characteristic, a diffeomorphism in-
variant, expressing fundamental topological information
[8]. In order to make the reader acquainted with it, we
remind one that a way to analyze a geometrical object
is to fragment it into other more familiar objects and
then to examine how these pieces fit together. Take, for
example, a surface S in the Euclidean three dimensional
space. Slice S into pieces that are curved triangles (this
is called a triangulation of the surface). Then count the
number F of faces of the triangles, the number E of edges,
and the number V of vertices on the tesselated surface.
Now, no matter how we triangulate a compact surface S,
x�S� � F 2 E 1 V will always equal a constant which
is characteristic of the surface and which is invariant under
diffeomorphisms f: S ! S0. This is the Euler character-
istic of S. At higher dimensions this can be again defined
by using higher-dimensional generalizations of triangles
(simplexes) and by defining the Euler characteristic of the
n-dimensional manifold S to be

x�S� �
nX

k�0

�21�k�No. of “faces of dimension k”� . (3)

In differential topology a more standard definition of x�S�
is

x�S� �
nX

k�0

�21�kbk�S� , (4)

where also the numbers bk —the Betti numbers of S—are
diffeomorphism invariants [9]. While it would be hope-
less to try to practically compute x�S� from Eq. (4) in
the case of nontrivial physical models at large dimension,
there is a possibility given by a powerful theorem, the
Gauss-Bonnet-Hopf theorem, that relates x�S� with the
total Gauss-Kronecker curvature of the manifold, i.e., [10]

x�S� � g
Z

S
KG ds (5)

which is valid for even dimensional hypersurfaces of
Euclidean spaces �N [here dim�S� � n � N 2 1],
and where g � 2�Vol��n
1 � is twice the inverse of the

volume of an n-dimensional sphere of unit radius;
KG is the Gauss-Kronecker curvature of the manifold;
ds �

p
det�g� dx1 dx2 · · · dxn is the invariant volume

measure of S, and g is the Riemannian metric induced
from �N . Let us briefly sketch the meaning and definition
of the Gauss-Kronecker curvature.

The study of the way in which an n surface S curves
around in �N is measured by the way the normal direc-
tion changes as we move from point to point on the sur-
face. The rate of change of the normal direction j at
a point x [ S in direction v is described by the shape
operator Lx�v� � 2=vj, where v is a tangent vector at
x and =v is the directional derivative, hence Lx�v� �
2�=j1 ? v , . . . , =jn11 ? v�; gradients and vectors are rep-
resented in �N . As Lx is an operator of the tangent
space at x into itself, there are n independent eigenvalues
[11] k1�x�, . . . , kn�x� which are called the principal cur-
vatures of S at x. Their product is the Gauss-Kronecker
curvature: KG�x� � P

n
i�1ki�x� � det�Lx�. The practical

computation of KG for the equipotential hypersurfaces Sy

proceeds as follows. Let j � =V�k=Vk be the unit nor-
mal vector to Sy at a given point x, and let �v1, . . . , vn� be
any basis for the tangent space of Sy at x. Then [11]
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Let us now consider the family of �Sy�y[� associated
with a particular physical system and show how things
work in practice. We consider the so-called w4 model on
a d-dimensional lattice �d with d � 1, 2, described by the
potential function
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(7)

where 	ik
 stands for nearest-neighbor sites. This system
has a discrete �2 symmetry and short-range interactions;
therefore, according to the Mermin-Wagner theorem, in
d � 1 there is no phase transition whereas in d � 2 there
is a symmetry-breaking transition of the same universality
class of the 2D Ising model.

Independently of any statistical measure, let us now
probe, by computing x�Sy� vs y according to Eq. (5), if
and how the topology of the hypersurfaces Sy varies with
y. To this aim we first devised an algorithm of Monte
Carlo type by constructing a Markov chain on any de-
sired surface Sy . This is obtained by means of a “de-
mon” algorithm corrected with a projection technique [12]
which provides a simple and efficient method to con-
strain a random walk on a level hypersurface, here, of
the potential function. Each new step so obtained on Sy
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FIG. 1. Numerical computation of the Euler characteristic for
24-dimensional spheres. y is the squared radius.

represents a trial step which is accepted or rejected ac-
cording to a Metropolis-like “importance sampling” crite-
rion [13] adapted to the weight

p
det�g�. With any Monte

Carlo scheme we can actually compute densities, that is
we can estimate only

R
Sy

KG ds�
R

Sy
ds, the average of

KG , rather than its total value (5) on Sy , hence the need
for an estimate of Area�Sy� �

R
Sy

ds as a function of
y. To this aim we worked out a geometric formula that
links the relative variation of Area�Sy� with respect to an
arbitrary initial value Area�Sy0�, to another Monte Carlo
average on Sy : 	M1�k=Vk
Sy

MC where M1 � 1
n

Pn
i�1 ki

is the mean curvature of Sy [14]. Thus the final out-
comes of our computations are the relative variations of the
Euler characteristic. The computation of KG at any point
x [ Sy proceeds by working out an orthogonal basis for
the tangent space at x, orthogonal to j � =V�k=Vk, by
means of a Gram-Schmidt orthogonalization procedure.
Then Eq. (6) is used to compute KG at x. On each Sy

we sampled 1 3 106 3.5 3 106 points where we com-
puted KG . This number of points was varied, and several
initial conditions were also considered in order to check
the stability of the results. The computations were per-
formed for dim�Sy� � 48, 80 (i.e., N � 7 3 7, 9 3 9)
and with the choice l � 0.6, m2 � 2, J � 1 for the pa-
rameters of the potential. In order to test the correct-
ness of our numerical “protocol” to compute x�Sy�, and
to assess its degree of reliability, we checked the method
against a simplified form of the potential V in Eq. (7),
i.e., with l � J � 0, m2 � 21. In this case the Sy are
hyperspheres and therefore x��n

y� � 2 for any even n.
Area��n

y� is analytically known as a function of the radiusp
y, therefore the starting value Area�Sy0� is known, and

in this case we can compute the actual values of x�Sy�
instead of their relative variations only.

In Fig. 1 we report x�Sy � �n
y� vs y�N for N � 5 3

5; the results are in agreement with the theoretical value
within an error of a few percent, a very good precision
in view of the large variations of x�Sy� that are found
with the full expression (7) of V . In Fig. 2 we report
the results for the 1D lattice, which is known to not un-
dergo any phase transition. Apart from some numerical
noise—here enhanced by the more complicated topology
2776
FIG. 2. 1D w4 model. Relative variations of the Euler char-
acteristic of Sy vs y�N (potential energy density). Lattice of
N � 1 3 49 sites. Full line is a guide to the eye.

of the Sy when l, J fi 0—a monotonously (in the av-
erage) decreasing pattern of x�y�N� is found. Since the
variation of x�y�N� signals a topology change of the �Sy�,
Fig. 2 tells that a “smoothly” varying topology is not suf-
ficient for the appearance of a phase transition. In fact,
when the 2D lattice is considered, the pattern of x�y�N�
is very different: it displays a rather abrupt change of the
topology variation rate with y�N at some yc�N . This re-
sult is reported in Fig. 3 for a lattice of N � 7 3 7 sites,
and in Fig. 4 for a larger lattice of N � 9 3 9 sites [15].

The question is now whether the value yc�N , at which
x�y�N� displays a cusp, has anything to do with the ther-
modynamic phase transition, i.e., we wonder if the ef-
fective support of the canonical measure shrinks close to
Sy�yc just at b � 1�Tc, the (inverse) critical tempera-
ture of the phase transition. The answer is in the af-
firmative. In fact, the numerical analysis in Refs. [4,16]
shows that—with l � 0.6, m2 � 2, J � 1—the function

FIG. 3. 2D w4 model. Relative variations of the Euler char-
acteristic of Sy vs y�N (potential energy density). Lattice of
N � 7 3 7 sites. The vertical dotted line corresponds to the
phase transition point. Full line is a guide to the eye.



VOLUME 84, NUMBER 13 P H Y S I C A L R E V I E W L E T T E R S 27 MARCH 2000
FIG. 4. 2D w4 model. Relative variations of the Euler char-
acteristic of Sy vs y�N (potential energy density). Lattice of
N � 9 3 9 sites. The vertical dotted line corresponds to the
phase transition point. Full line is a guide to the eye.

1
N 	V 
 �T � and its derivative signal the phase transition at
1
N 	V 
 � 3.75, a value in very good agreement—within
the numerical precision—with yc�N where the cusp of
x�y�N� shows up. Through the computation of the y

dependence of a topologic invariant, the hypothesis of a
deep connection between topology changes of the �Sy�
and phase transitions has been given a direct confirma-
tion. Moreover, we found that a sudden second order
variation of the topology of these hypersurfaces is the
“suitable” topology change—mentioned at the beginning
of the present Letter—that underlies the phase transition
of second kind in the lattice w4 model.

There is no reason why the results presented here should
be peculiar only to the chosen model, and therefore they
point to a general validity of the relationship between
topology and phase transitions, opening a wide field of
future investigations and applications.
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