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Interpretation of the Nonextensivity Parameter q in Some Applications
of Tsallis Statistics and Lévy Distributions
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The nonextensivity parameterq occurring in some of the applications of Tsallis statistics (known als
as index of the corresponding Lévy distribution) is shown to be given, in theq . 1 case, entirely by the
fluctuations of the parameters of the usual exponential distribution.
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There is an enormous variety of physical phenomena d
scribed most economically (by introducing only one ne
parameterq) and adequately by the so called nonextensi
statistics introduced some time ago by Tsallis [1]. The
include all situations characterized by long-range intera
tions, long-range microscopic memories, and space-tim
(and phase space as well) (multi)fractal structure of th
process (cf. [1] for details). The high energy physics a
plications of nonextensive statistics are quite recent but a
already numerous and still growing; cf. Refs. [2–8]. Al
examples mentioned above have one thing in commo
the central formula employed is the following powerlike
distribution:

Gq�x� � Cq

∑
1 2 �1 2 q�

x
l

∏ 1
12q

, (1)

which is just a one parameter generalization of th
Boltzmann-Gibbs exponential formula to which it con
verges forq ! 1:

Gq�1 � g�x� � c exp

∑
2

x
l

∏
. (2)

WhenGq�x� is used as probability distribution (Lévy dis-
tribution) of the variablex [ �0, `� (which will be the
case we are interested in here), the parameterq is lim-
ited to 1 # q , 2. For q , 1, the distributionGq�x� is
defined only forx [ �0, l��1 2 q��. Forq . 1 the upper
limit comes from the normalization condition (to unity)
for Gq�x� and from the requirement of the positivity of
the resulting normalization constantCq. However, if one
demands in addition that the mean value ofGq�x� is well
defined, i.e., that�x� � l��3 2 2q� , ` for x [ �0, `�,
thenq is further limited to1 # q , 1.5 only. In spite of
numerous applications of the Lévy distributionGq�x�, the
interpretation of the parameterq is still an open issue. In
this Letter we demonstrate, on the basis of our previous a
plication of the Lévy distribution to cosmic rays [2], tha
this Lévy distributionGq�x� (1) emerges in a natural way
from the fluctuations of the parameter1�l of the original
exponential distribution (2) and that the parameters of
distributionf�1�l� define parameterq in a unique way.

Let us first briefly summarize the result of [2]. Ana-
lyzing experimental distributionsdN�x��dx of depthsx
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of interactions of hadrons from cosmic ray cascades
the emulsion chambers, we have shown that the so cal
long flying component[manifesting itself in apparently un-
expected nonexponential behavior ofdN�x��dx] is just a
manifestation of the Lévy distributionGq�x� with q � 1.3.
This result must be confronted with our earlier analys
of the same phenomenon [9]. We have demonstrat
there that distributionsdN�x��dx can be also described
by the fluctuation of the corresponding cross sections �
AmN

1
l (whereA denotes mass number of the target,mN

is the mass of the nucleon, andl is the corresponding
mean free path). The fluctuation of this cross section (i.e
in effect, fluctuations of the quantity1�l) with relative
variance

v �
�s2� 2 �s�2

�s�2 $ 0.2 (3)

allow us to describe the nonexponentiality of the exper
mental data as well as the distributionGq�1.3�x� mentioned
above. We therefore argue that these two numerical e
amples show that fluctuations of the parameter1�l in the
g�x; l� result in the Lévy distributionsGq�x; l�.

Actually the above quoted example from cosmic ra
physics is not the only one known at present in the field o
high energy collisions. It turns out [3–5] that distributions
of transverse momentadN�pT ��dpT are best described by
a slightly nonexponential distributionGq�pT � of the Lévy
type withq � 1.01 1.2 depending on the situation consid-
ered. The usual exponential distributiondN�pT ��dpT �
g�pT � � exp�2

p
m2 1 p2

T �kT � contains as a main pa-
rameter the inverse temperatureb � 1�kT and the above
mentioned numerical results leading toGq�1.01 1.2�pT �
can again be understood as a result of a fluctuation
inverse temperatureb in the usual exponential formula
g�pT �. This point is of special interest because of rece
discussions on the dynamical possibility of temperatu
fluctuations in some collisions; cf. Refs. [10–12]. Late
on we shall use it to illustrate our results concerningq.

To recapitulate, we claim that (forq . 1) the parame-
ter q is nothing but a measure of fluctuations present i
Lévy distributionsGq�x� describing particular processes
© 2000 The American Physical Society
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under consideration. To make our statement more quan-
titative, let us analyze the influence of fluctuations of
parameter 1�l which are present in the exponential for-
mula g�x� � exp�2x�l� on the final result. Our aim will
be a deduction of the form of the function f�1�l� which
leads from an exponential distribution g�x� to powerlike
Lévy distribution Gq�x� and which describes fluctuation
about the mean value 1�l0, i.e., such that

Gq�x; l0� � Cq

µ
1 1

x
l0

1
a

∂2a

� Cq

Z `

0
exp

µ
2

x
l

∂
f

µ
1
l

∂
d

µ
1
l

∂
, (4)

where for simplicity we have introduced the abbreviation
a �

1
q21 . From the representation of the Euler gamma

function we have [13]µ
1 1

x
l0

1
a

∂2a

�
1

G�a�

Z `

0
dj ja21

3 exp

∑
2j

µ
1 1

x
l0

1
a

∂∏
. (5)

Changing variables under the integral in such a way that
j

l0

1
a �

1
l one immediately obtains Eq. (4) with f�1�l�

given by the following gamma distribution:

f

µ
1
l

∂
� fa

µ
1
l

,
1
l0

∂

�
1

G�a�
�al0�

µ
al0

l

∂a21

exp

µ
2

al0

l

∂
(6)

with mean value ø
1
l

¿
�

1
l0

(7)

and variation øµ
1
l

∂2¿
2

ø
1
l

¿2

�
1

al
2
0

. (8)

Notice that with increasing a variance (8) decreases and
asymptotically (for a ! `, i.e., for q ! 1) the gamma
distribution (6) becomes a delta function d�l 2 l0�.
The relative variance [cf. Eq. (3)] for this distribution is
given by

v �
�� 1

l �2� 2 � 1
l �2

� 1
l �2

�
1
a

� q 2 1 . (9)

We see therefore that, indeed, the parameter q in the Lévy
distribution Gq�x� describes the relative variance of the pa-
rameter 1�l present in the exponential distribution g�x; l�.

Some remarks on the numerical results quoted before
[2,9] are in order here. Notice that the value of q � 1.3 for
cosmic ray distribution dN�x��dx obtained in [2] leads to
the relative variance of the cross section v � 0.3, whereas
in [9] we have reported value v0 � 0.2. This discrepancy
has its origin in the fact that in numerical calculations
in [9] we have used a symmetric Gaussian distribution
to describe fluctuations of the cross section, whereas the
relation (9) has been obtained for fluctuations described
by gamma distribution. In the Gaussian approximation we
expect that

q 2 1
q2 , v0 , q 2 1 , (10)

where lower and upper limits are obtained by normaliz-
ing the variance of the f�1�l� distribution to the modial
[equal to �2 2 q��l0] and mean (equal to 1�l0) values, re-
spectively. Therefore for q � 1.3 one should expect that
0.18 , v0 , 0.3, which is exactly the case.

Let us now proceed to the above mentioned analysis
of transverse momentum distributions in heavy ion colli-
sions, dN�pT ��dpT [4,5]. It is interesting to notice that
the relatively small value q 	 1.015 of the nonextensive
parameter obtained there, if interpreted in the same spirit
as above, indicates that rather large relative fluctuations
of temperature, of the order of DT�T 	 0.12, exist in
nuclear collisions. It could mean therefore that we are
dealing here with some fluctuations existing in small parts
of the system in respect to the whole system (according
to interpretation of [12]) rather than with fluctuations of
the event-by-event type in which, for large multiplicity
N , fluctuations DT�T � 0.06�

p
N should be negligibly

small [10].
We now propose a general explanation of the meaning

of the function f�x� describing fluctuations of some vari-
able x . In particular, we are interested in why, and under
what circumstances, it is the gamma distribution that de-
scribes fluctuations. To this end let us start with the well
known equation for the variable x , which in the Langevin
formulation has the form [14]

dx

dt
1

∑
1
t

1 j�t�
∏
x � f � const . 0 . (11)

Let us concentrate for our purposes on the stochastic pro-
cess which is defined by the white Gaussian noise j�t�,
with ensemble mean,

�j�t�� � 0 (12)

and correlator �j�t�j�t 1 Dt��, which for sufficiently fast
changes is equal to

�j�t�j�t 1 Dt�� � 2Dd�Dt� . (13)

Constants t and D define, respectively, the mean time
for changes and their variance by means of the following
conditions:

�x�t�� � x0 exp

µ
2

t
t

∂
, �x2�t � `�� �

1
2

Dt .
(14)

Thermodynamical equilibrium is assumed here (i.e., t ¿
t, in which case the influence of the initial condition
x0 vanishes and the mean squared of x has value corre-
sponding to the state of equilibrium). Making use of the
Fokker-Planck equation [15]
2771
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df�x�
dt

� 2
≠

≠x
K1f�x� 1

1
2

≠2

≠x2 K2f�x� (15)

we get for the distribution function the expression

f�x� �
c

K2�x�
exp

∑
2

Z x

0
dx 0 K1�x 0�

K2�x 0�

∏
, (16)

where the constant c is defined by the normalization con-
dition for f�x�:

R`

0 dx f�x� � 1. K1 and K2 are the inten-
sity coefficients which for the process defined by Eq. (11)
are equal to (cf., for example, [16])

K1�x� � f 2 2
x

t
1 Dx ,

K2�x� � 2Dx2.
(17)

It means therefore that as a result we have the following
distribution function:

f�x� �
1

G�a�
m

µ
m

x

∂a21

exp

µ
2

m

x

∂
, (18)

which is nothing but a gamma distribution of variable 1�x

depending on two parameters:

m �
f

D
, a �

1
tD

. (19)

Returning to the q notation [cf. Eq. (4)] we have therefore

q � 1 1 tD ; (20)

i.e., the parameter of nonextensivity is given by the param-
eter D describing the white noise and by the damping con-
stant t. This means then that the relative variance v�1�x�
of distribution (18) is [as in Eq. (9)] given by tD.

As illustration of the genesis of Eq. (11) used to derive
Eq. (20), we turn once more to the fluctuations of tem-
perature [10–12] discussed before (i.e., to the situation
when x � T ). Suppose that we have a thermodynamic
system, in a small (mentally separated) part of which the
temperature fluctuates with DT � T . Let j�t� describe
stochastic changes of temperature in time. If the mean
temperature of the system �T � � T0, then, as a result of
fluctuations in some small selected region, the actual tem-
perature T 0 equals

T 0 � T0 2 bj�t�T , (21)

where the constant b is defined by the actual definition
of the stochastic process under consideration, i.e., by j�t�,
which is assumed to satisfy conditions given by Eqs. (12)
and (13). The inevitable exchange of heat between this se-
lected region and the rest of the system leads to the equili-
bration of the temperature. The corresponding process of
heat conductance is described by the equation [17]

cpr
≠T
≠t

2 a�T 0 2 T � � 0 , (22)

where cp , r, and a are, respectively, the specific heat,
density, and the coefficient of the external conductance.
2772
Using T 0 as defined in (21) we finally get the linear differ-
ential equation (11) for the temperature T with coefficients
t �

cpr

a , f �
a

cpr T0 � To�t, and b � t:

≠T
≠t

1

∑
a

cpr
1

a
cpr

bj�t�
∏
T �

a
cpr

T0 . (23)

This result demonstrates clearly that one can think of a
deep physical interpretation of the parameter q of the cor-
responding Lévy distribution describing the distributions
of the transverse momenta mentioned before. In this re-
spect our work differs from works in which Gq�x� is shown
to be connected with Gq�1�x� � g�x� by the so called
Hilhorst integral formula [the trace of which is our Eq. (5)]
[13,18] but without discussing the physical context of the
problem. Our original motivation was to understand the
apparent success of Tsallis statistics (i.e., the situations in
which q . 1) in the realm of high energy collisions.

To summarize, if fluctuations of the variable x can be
described in terms of the Langevin formulation, their distri-
bution function f�1�x� satisfies the Fokker-Planck equa-
tion and is therefore given by the gamma distribution in
the variable 1�x. Such fluctuations of the parameter 1�x

in the exponential formula of physical interest, g�x�x�,
lead immediately to a Lévy distribution Gq.1�x�x� with
q parameter given by the relative variance of the fluctua-
tions described by f�1�x�. It should be stressed that in
this way we address the interpretation of only very limited
cases of applications of Tsallis statistics. They belong to
the category in which the power laws physically appear as
a consequence of some continuous spectra within appro-
priate integrals. It does not touch, however, a really hard
case of applicability of Tsallis statistics, namely, when zero
Lyapunov exponents are involved [19]. Nevertheless, this
allows us to interpret some nuclear collisions data in terms
of fluctuations of the inverse temperature, providing thus
an important hint to the origin of some systematics in the
data, understanding of which is crucial in the search for
the new state of matter: the quark gluon plasma [4,11].
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