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Brownian Motion of Spiral Waves Driven by Spatiotemporal Structured Noise
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Spiral chemical waves subjected to a spatiotemporal random excitability are experimentally and nu-
merically investigated in relation to the light-sensitive Belousov-Zhabotinsky reaction. Brownian motion
is identified and characterized by an effective diffusion coefficient which shows a rather complex depen-
dence on the time and length scales of the noise relative to those of the spiral. A kinematically based
model is proposed whose results are in good qualitative agreement with experiments and numerics.

PACS numbers: 82.40.Bj, 05.45.Jn, 47.54.+r
Spirals are generic structures in extended nonequilib-
rium systems. They are characteristic of many reaction-
diffusion systems [1], the most paradigmatic experimental
example being the Belousov-Zhabotinsky (BZ) reaction
[2], and they have been observed in systems as complex
as the heart muscle associated to cardiac fibrillation [3,4].
Spiral patterns appear also as elementary solutions of the
complex Ginzburg-Landau (CGL) equation [5].

Beyond the standard description of spiral waves, their
response to spatial and/or temporal forcing has been
largely analyzed. Temporal resonance [6], drift of vortices
due to parameter gradients [7,8] or external fields [9], and
anchoring on localized defects [10] are among the most
studied effects.

On the other hand, the influence of random hetero-
geneities on extended excitable systems has recently at-
tracted much attention. Noise as an initiator of new spatial
structures [11–13], or sustaining wave propagation in
subexcitable media [14–16], is a subject of much theoreti-
cal and experimental interest. Complementarily, the role
of superimposed disorder on preexisting spatiotemporal
patterns has been examined, in relation to propagating
pulses [17], to the dynamics of CGL spirals [18] and 3D
structures [19].

In this paper, we study the effect of a spatiotemporal
structured noise on the motion of a spiral wave for the
photosensitive BZ reaction. In the absence of randomness,
the spiral tip rotates quasirigidly around its core, with no
net translational mobility. When the noise is switched on,
Brownian diffusion of the spiral is observed, characterized
by a nonmonotonous dependence on the parameters of the
noise. These observations are confirmed numerically us-
ing a two-variable Oregonator model. The analysis is com-
pleted by proposing a simple theoretical model based on a
kinematic approach [20], capturing the basic features ob-
served in experiments.

Experiments were carried out in a Petri dish of 9 cm di-
ameter. The catalyst, ruthenium bipyridil, is immobilized
in a thin, 1 mm thick, film of silica gel, prepared as in [21].
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A solution of catalyst-free BZ reaction (initial concentra-
tions 0.18M KBr, 0.33M malonic acid, 0.39M NaBrO3,
and 0.50M H2SO4) was poured onto the gel. The tempera-
ture was kept constant at 25 6 1 ±C. Spatiotemporal noise
is introduced by projecting on to the Petri dish the desired
patterned illumination, controlling the excitability of the
system, by means of a video projector (SONY CPJ-D500).
Experiments were captured in a video recorder through a
charge-coupled device camera placed vertically. In order
to enhance the contrast, an interference filter at 460 nm
was placed before the camera lens. The images were digi-
tized by an image-acquisition card (miroVideo DC30 plus)
and analyzed on a PC.

The illumination field consisted of an array of square
cells of size � whose light intensity was varied on an eight-
bit gray scale between 0 and 255. In the illumination range
used, the speed of planar autowaves decreases linearly with
the light intensity [22]. With our random forcing, the light
intensity in the cell �i, j� is Iij�t� � I0 1 jij�t�, where the
random term jij�t� stands for a spatiotemporal Gaussian
process, with a time independent zero mean average and
a correlation function �jij�t�jlm�t0�� � s2 exp�2jt 2 t0j�
t�dildjm [23,24] (see Fig. 1). As a first step in examin-
ing the effects of spatiotemporal noise on spiral dynam-
ics in what follows we report on a series of experiments
conducted with fixed � comparable to the size of the core.
In each series we vary the correlation time t, keeping the
noise dispersion s2 constant. For the sake of comparison,
sets of experiments and numerical simulations were also
performed with pure temporal noise (i.e., corresponding
to the limit of infinite �). Experiments started with the
generation of a free end in a square lattice of 2.5 cm 3

2.5 cm size by inhibiting one-half of a planar wave. After
5 min under uniform illumination, the medium was cov-
ered with a fully developed spiral of approximately nine
wavelengths (wavelength l � 0.27 cm, period T � 45 s,
core size d � 0.11 cm). An effective diffusion coefficient
is calculated in terms of the tip mean square displacement
by averaging over five trajectories.
© 2000 The American Physical Society
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FIG. 1. Characterization of spatiotemporal noise employed in
experiments. (a) Snapshot of a spiral wave (the background
was subtracted to enhance the contrast) superposed to the il-
lumination pattern with random intensity values at each cell
(� � 0.9 mm, I0 � 0.28 mW cm22). (b) Statistical properties
of the fluctuating illumination: any cell in the array exhibits a
Gaussian distribution centered in a relative gray value of 100
with a standard deviation of 40. The temporal part of the auto-
correlation function fits the exponential law given in the text for
t � 35 s.

Numerically, we used a two-variable Oregonator model
adapted to our photosensitive medium [25],

≠tu �
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√
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1 Du=2u ,

≠ty � �u 2 y� 1 Dy=2y ,
(1)

where u (respectively, y) describes HBrO2 (respectively,
catalyst) concentrations. Du and Dy are diffusion coef-
ficients, and f, q, and ´ are parameters related to the
BZ kinetics. fij�t� represents the light-induced flow of
Br2, directly proportional to the illumination Iij�t�. Equa-
tions (1) were numerically integrated using a Euler method
[23,24] with a time step of 1023 t.u. (time units) and a
grid size of 0.16 s.u. (space units) in an array of 500 3

500 points. Zero flux boundary conditions were consid-
ered. The tip coordinates of an initially prepared spiral
(l � 9.6 s.u., T � 1.69 t.u., d � 3.2 s.u.) were tracked
following the point where the cross product of u and y

gradients was maximal [26]. For each value of t, a num-
ber of roughly one hundred trajectories were simulated to
reduce statistical dispersion.

The qualitative effect of t on the Brownian motion of
the spiral is illustrated in Fig. 2. Both experimentally
2(a)–2(c) and numerically 2(d)–2(f) it is found that its
mobility largely depends on t. For values of t smaller
[Figs. 2(a) and 2(d)] and greater [Figs. 2(c) and 2(f)] than
t � T�2p , T being the rotation period, the trajectories are
confined to a reduced part of the whole medium as enrolled
filaments. Contrarily, for t around T�2p [Figs. 2(b) and
2(e)], trajectories span over a larger region, even reaching
the boundary where the spiral finally dies out. Quantitative
results are displayed in Fig. 3, together with experimen-
tal and numerical results corresponding to pure temporal
noise. For finite �, the amplitude of the resonant peak in-
creases and it appears at higher values of t.

In order to gain some theoretical insight, we use a
kinematical approach appropriate to 2D spiral waves for
weakly excitable media [20]. Although our experiments
FIG. 2. Superimposition of the final spiral state and the whole trajectory of the tip for three different values of t both experimentally
(a)–(c) and numerically (d)–(f ). In the experiment, the noise pattern was updated at 700 ms intervals and was interrupted during
10 ms every 35 s in order to capture a noise-free image of the wave activity. (a) t � 1 s, (b) t � 35 s, (c) t � 100 s, (d) t � 1 t.u.,
(e) t � 20 t.u., and (f ) t � 100 t.u. The arrow indicates the initial position of the tip. Experimentally, same parameters as in the
caption of Fig. 1. Numerically, f0 � 0.01, ´ � 0.01, f � 1.4, q � 0.002, Du � 1, Dy � 0.6, s � 0.0033, and � � 3.2 s.u.
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FIG. 3. Effective diffusion coefficient versus noise correlation time t. (a) Experimental results with parameters as in Fig. 1.
Continuous lines correspond to the fits of our analytical results. Parameter values for the pure temporal case are s2 � 0.00076,
v0 � 0.14. Parameter values for the spatiotemporal case are s2, v0 as before and V̄0

v0� � 4, a � 400. (b) Results for the Oregonator
model with parameters of Fig. 2, except � � 6.4 s.u. Continuous lines correspond to the fits of our analytical results. Parameter
values for the pure temporal case are s2 � 0.38, v0 � 3.7. Parameter values for the spatiotemporal case are s2, v0 as before and
V̄0

v0� � 1, a � 0.7. Error bars associated to the statistics of the experimental and numerical data are depicted.
fall beyond that limit, such a description enables us to cap-
ture, at least qualitatively, what we believe are the essential
features of the effect of structured noise on well-formed
spirals. For simplicity, we restrict the standard scheme to
a situation with constant angular velocity v0 and retain the
equations for the tip position, together with the relaxation
dynamics of the instantaneous curvature of the spiral at its
free end,

�x � 2V0 sinv0t 2 g�kc 2 k0� cosv0t ,

�y � V0 cosv0t 2 g�kc 2 k0� sinv0t , (2)

�k0 � 2�1�tG�g�k0 2 kc� .

Within the kinematic approach, it seems most natural to
consider fluctuations of V0, the tip velocity normal to the
wave front, and/or the critical curvature kc. Let us start
with the simplest situation corresponding to V0�r, t� �
V̄0 1 j�r, t�, but with no tangential velocity of the free end
(no sprouting or contraction of the spiral curve): kc�t� �
kc � k0. Within the spirit of the quasistatic approxima-
tion, implicit in the kinematic scheme above, the spatial
structure of the noise will enter only through the successive
positions visited by the tip. The problem is thus formally
reduced to a zero dimensional one with a purely temporal
noise defined by h�t� � j���r�t�, t���, where r�t� is the tip tra-
jectory. For any arbitrary (stationary) temporal noise h�t�
added to V̄0, it can be shown that the diffusion coefficient
D of the tip position is given exactly in terms of the value
of power spectrum of the noise D � Ph�v0� at the natu-
ral frequency v0 [27]. The problem is thus reduced to the
computation of such power spectrum for the effective tem-
poral noise defined above. This cannot be accomplished
exactly so we introduce a “quasideterministic” approxima-
tion by defining the effective noise as h0�t� � j���r0�t�, t���,
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where r0�t� is the deterministic trajectory, which in our
case corresponds to a circular motion with frequency v0.

For the correlator corresponding to our experimental
noise, the expression for the effective diffusion coeffi-
cient within the above mentioned approximation reads
explicitly [27]
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Let us first analyze the case of purely temporal noise
( V̄0

v0� ø 1, i.e., core radius much smaller than the noise
correlation length). We obtain a resonantlike dependence
of D with t � 1�v0, in full agreement with the experi-
mental and numerical results. The physical interpretation
of this behavior is as follows. At fixed noise dispersion
s2, the effect of noise must disappear for vanishing t,
since fast, bounded fluctuations will be averaged out by
the system. On the other hand, for v0t ¿ 1, the spiral
core loses mobility because the noise does not change ap-
preciably during a rotation period of the tip. The effect of
temporal noise is thus most effective when noise variations
occur at the natural time scale of the spiral.

In the parameter region where V̄0

v0� � O�1�, D is sig-
nificantly enhanced, particularly near resonant conditions.
This is again in accordance with the experimental and nu-
merical observations. However, Eq. (3) predicts an artifi-
cial linear increase of D at large t. The basic limitation
of the quasideterministic ansatz which leads to Eq. (3) lies
in the fact that the deterministic trajectory is closed. This
introduces spurious effects at large correlation times of the
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noise since, for v0t ¿ 1, the values of the effective noise
seen by the tip appear strongly correlated after every ro-
tation period. In fact, the actual trajectory is not closing
in itself and decorrelates the effective noise by exploring
spatially uncorrelated regions.

Nevertheless, the model can be formally corrected for
this effect by introducing an additional time scale t� which
accounts for the above spatial decorrelation. Rather than
attempting to go into a detailed discussion of the different
mechanisms that may play a role in defining such a pa-
rameter, we concentrate on a crucial ingredient that has
been missing so far: the role of fluctuations in kc [28].
It is worth mentioning at this point that numerical simu-
lations of Eq. (2) (results not included in this Letter [27])
show a rather different behavior at values of t 	 T , de-
pending on whether noise is introduced only through V0
or on both V0 and kc. Without noise on kc, there is a ten-
dency of the tip motion to attach its quasicircular motion
to the boundaries between cells and propagate along them.
Contrarily when noise is added also through kc this effect
is avoided, the tip being confined most of the time inside
the cells except for relatively fast transits between them.
We recognize that this is nothing but a signature of a sort
of pinning effect, as is indeed also evidenced by experi-
ments and numerical treatment of the Oregonator model
at large values of t. According to this mechanism, an
heuristic argument [27] can be invoked which predicts an
asymptotic decay of D for large t of the form D � 1�t.
This functional dependence can be incorporated into our
scheme for V̄0

v0� � O�1�, by defining t� 
 a�t and fur-
ther replacing t by teff (1�teff 
 1�t 1 1�t�) in Eq. (3).

Comparisons of this effective theory with the experi-
mental and numerical results are shown in Fig. 3. The
good agreement between the analytical prediction Eq. (3)
[29] (with the appropriate teff) and both experiments and
numerical integration of the Oregonator model, for a very
large range of parameters, suggests that the model pro-
posed, in spite of its apparent simplicity, does capture the
basic physical mechanisms of the problem.
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