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Rigorous Derivation of the Long-Time Asymptotics for Reversible Binding
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Using an iterative solution in Laplace-Fourier space, we supply a rigorous mathematical proof for
the long-time asymptotics of reversible binding in one dimension. The asymptotic power law and its
concentration dependent prefactor result from diffusional and many-body effects which, unlike for the
corresponding irreversible reaction and in classical chemical kinetics, play a dominant role in shaping
the approach to equilibrium.

PACS numbers: 82.20.Mj
Are many-body and mobility effects important for bi-
molecular reactions in condensed phases? The simplest ir-
reversible diffusion influenced reaction, A 1 B ! C, has
been studied by von Smoluchowski [1] in the pseudouni-
molecular limit where c � �B� far exceeds �A�, the con-
centration of A. It has since been demonstrated several
times [2–4] that for the “target problem” [5] of a static A
molecule, the von Smoluchowski theory is equivalent to an
exact solution of a pair problem. Even when A is mobile
the deviations from this theory are small [5,6], so that truly
many-body effects are hardly observable. Mobility effects
introduce short-time deviations from exponentiality which
are hard to detect experimentally. The conclusion from this
celebrated problem might be that the theory of diffusion in-
fluenced reactions [7] deals with negligible corrections to
classical chemical kinetics.

The situation changes dramatically for reversible reac-
tions

A 1 B
ka

:
kd

C ,

in which every dissociation event renews the competition
of B particles over binding to A. In the pseudounimolecular
case, chemical kinetics predicts an approach to equilibrium
as exp�2�kd 1 cka�t�. In contrast, experiment [8], simu-
lations [9–11], and most theoretical approaches [12–25]
agree that the ultimate approach to equilibrium is a power
law, t2d�2 in d dimensions, but there is no rigorous proof
for this result. In addition, there is no agreement on the
concentration dependence of the prefactor, which changes
with the level of the (approximate) many-body theory
employed.

Fluctuation analysis of bimolecular chemical reactions
[12] first suggested that the asymptotic approach to equi-
librium is a power law rather than exponential, but precise
expressions were not provided. The simple “superposi-
tion approximation” (SA) for the reversible target problem
[13] suggested that the survival probability of an initially
unbound A to remain so by time t, denoted PA�t�, obeys
the following asymptotic law in d dimensions [16,17]:

PA�t� �
1

1 1 cKeq
1

cK2
eq

�1 1 cKeq�a

1
�4pDt�d�2 , (1)
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where a � 2. D is the diffusion coefficient of the B par-
ticles. The (association) equilibrium coefficient, in the
absence of long-range interactions between A and B, is
given by Keq � ka�kd . Comparison with one-dimensional
Brownian simulations [9–11] showed that the correct pref-
actor differs from the simple SA prediction. A linearized
version of an enhanced SA developed later gave a � 3
[22,23], and that already agreed with the simulations. Con-
sequently Naumann, Shokhirev, and Szabo [22] conjec-
tured that Eq. (1) with a � 3 is the exact asymptotic
behavior. Interestingly, this also follows from an earlier
analysis of bimolecular reaction-diffusion equations (pro-
vided that some misprints in Eq. (12) of Ref. [18] are
corrected) and [26] from the “bimolecular boundary condi-
tion” of Ref. [15]. Most recently, the conjecture has been
contested [24]. The challenge remains to find a rigorous
proof starting from the exact equations of motion. This
challenge is met below.

Our proof is based on the diagrammatic technique of
Gopich and Doktorov [21], which was previously applied
to the problem of static reversible traps (mobile A which
binds reversibly to randomly distributed static B’s). In the
present approach, the exact many-particle diffusion equa-
tions are first transformed to Fourier-Laplace space, then
converted to an integral equation which is solved itera-
tively. We show that only two iterations are required for
obtaining the asymptotic behavior. Diffusion-limited re-
actions are most anomalous in one dimension, which pro-
vides the most stringent test for such theories [27]. While
the structure of our proof is independent of dimensionality,
more specialized, “radial” Fourier transforms are required
in dimensions d . 1 [28]. Thus it is best appreciated in
the simplest case of one-dimensional diffusion, without
sink terms or potentials. The additional technical detail
required to generalize it to d � 3 is available in Ref. [28].

We begin with a vacant static reversible trap, A, at the
origin (x � 0) and N noninteracting, diffusing B particles
(of identical diffusion coefficient D) randomly distributed
on �2L�2, L�2�. Their concentration is thus c � N�L.
When a B particle reaches the origin, it may bind with a
rate coefficient ka provided that the trap is still vacant.
C may in turn release a B particle, with a dissociation
coefficient kd . We wish to obtain the survival probability,
© 2000 The American Physical Society
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PA�t�, for A to be vacant at time t after the initiation of
the process in the “thermodynamic limit” (Tlim) in which
L ! ` and N ! `, while maintaining c � N�L
constant.

The state of the (finite) system is defined by N 1 1
“state vectors.” In the “A state” (vacant site) the vec-
tor �x � �x1, . . . , xN � denotes the location of particles
B1, . . . , BN . In the “Ci state” (bound Bi), the vector
�xfii � �x1, . . . , xi � 0, . . . , xN � depicts the location of the
remaining N 2 1 particles. We denote the probability
density functions (F) in the two states by FA� �x, t� and
FCi � �xfii , t�, respectively. These obey the N 1 1 coupled
diffusion equations [20]

≠FA� �x, t�
≠t

�
NX

i�1

∑
D

≠2FA

≠x2
i

2 kad�xi�FA 1 kdd�xi�FCi

∏
,

(2a)

≠FCi � �xfii , t�
≠t

�
NX

jfii�1

D
≠2FCi

≠x2
j

1 ka

Z `

2`
dxi d�xi�FA

2 kdFCi , (2b)

(i � 1, . . . , N) subject to the initial distribution

FA� �x, 0� � F0
A��x� � L2N , FCi � �xfii , 0� � 0 , (3)

namely, all the B particles are equivalent and randomly dis-
tributed around the vacant trap. Unlike other theoretical
approaches (e.g., the SA), which start from approximate
equations, we begin from the exact microscopic descrip-
tion of the N-particle problem in Eq. (2). The first term
on its right-hand side (rhs) describes the free motion of
each unbound B particle, whereas the localized sink terms
(not boundary conditions) depict the probability of each
particle to bind and unbind per unit time.

In the Tlim we have an infinite number of coupled
partial differential equations and their solution, even
asymptotically, seems formidable. These become simpler,
algebraic equations in Laplace-Fourier space. Laplace
transform over time and Fourier transform (FT) over space
are defined by

eF� �x, s� �
Z `

0
dt exp�2st�F� �x, t� ,

bF� �l, t� �
Z `

2`
dx1 . . .

Z `

2`
dxN exp�i �l ? �x�F� �x, t� ,

where �l ? �x �
PN

i�1 lixi is the usual scalar product and
i �

p
21. Using the Fourier representation of the delta

function, 2pd�x� �
R`

2` dl exp�2ilx�, and applying
both transforms to Eqs. (2) gives

�s 1 L2�
beFA� �l, s� � bF0

A� �l� 2 ka

NX
i�1

Ii
beFA 1 kd

NX
i�1

beFCi ,

(4a)

�s 1 L2
fii 1 kd�

beFCi � �lfii , s� � kaIi
beFA , (4b)

where L2 � D �l ? �l and L
2
fii � D �lfii ? �lfii . The inte-

gration operator over the ith Fourier component is Ii �
R`

2` dli�2p . Note that the FT of the initial distribution
for a finite interval,

bF0
A� �l� �

NY
i�1

2
Lli

sin

µ
Lli

2

∂
, (5)

obeys bF0
A��0� � 1, but if we let L ! ` then bF0

A� �l� !
�2p�L�N

QN
i�1 d�li�.

We proceed by rewriting Eqs. (4) as

beFA� �l, s� �
beG0

√bF0
A 2 ka

NX
i�1

W�Lfii�Ii
beFA

!
, (6)

where the effective A-B reactivity term is

W�z� �
s 1 z2

s 1 kd 1 z2 . (7)

It describes an “encounter,” which is the convoluted effect
of recombination with one B particle, diffusion of the re-
maining N 2 1 particles, and subsequent dissociation of
the bound B. beG0� �l, s� � �s 1 L2�21

is the Laplace-Fourier transform (LFT) of the free diffusion
Green function, G0��x, t� �

QN
i�1 exp�2x2

i �4Dt��
p

4pDt.
It is possible to iterate over Eq. (6), and this proce-

dure clearly produces a good short-time approximation.
However, to improve the convergence properties at long
times, we first replace G0 by an effective Green function,
Geff� �x, t�, whose LFT is defined bybeGeff� �l, s� � �s 1 L2 1 ckaW �L��21. (8)

This function has two useful limiting forms. If all the
Fourier variables vanish, one obtains the effective Green
function integrated over all spatial coordinates

beGeff��0, s� �
s 1 kd

s�s 1 kd 1 cka�

�
1

1 1 cKeq

µ
1
s

1
cKeq

s 1 kd 1 cka

∂
. (9)

This describes a simplified evolution of A, which is correct
at both t � 0 and t � `. Otherwise, when both �lfii and
xi vanish, we obtain, by back FT, an effective pair Green
function

egeff�s� � Ii
beGeff� �lfii � �0, s�

�
1

1 1 cKeq

µ
1

p
4Ds

1
cKeqp

4D�s 1 kd 1 cka�

∂
,

(10a)

geff�t� �
1

1 1 cKeq

1
p

4pDt
�1 1 cKeqe2�kd1cka�t� ,

(10b)

representing an ABi pair at zero separation.
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By inserting Eq. (8) into Eq. (6) we obtainbeFA� �l, s� �
beGeff

"bF0
A 2 ka

√
NX

i�1

W�Lfii�Ii

2 cW�L�

!beFA

#
. (11)

It is seen how the use of Geff results in renormalization of
the integral operator, which will facilitate the derivation of
the asymptotic behavior. Note that Eq. (11) is still exact,
and that solving it for the survival probability,

PA�t� � Tlim
Z `

2`
dx1 · · ·

Z `

2`
dxN FA� �x, t� , (12a)

ePA�s� � Tlim
beFA��0, s� , (12b)

in the Tlim requires taking the limits of N ! ` and
�l ! �0.

We proceed to solve Eq. (11) iteratively. The iteration
parameter, kaW�L�, behaves as Keq�s 1 L2� for small s
and L2. Hence the expansion for PA�t� is convergent for
long times. The zeroth iteration on Eq. (11) givesbeF�0�

A � �l, s� �
beGeff

bF0
A . (13)

Setting �l � �0, bF0
A��0� � 1, and applying Eq. (9) gives, for

small s,

eP�0�
A �s� �

1
s�1 1 cKeq�

, (14)

whose Laplace inverse is the equilibrium limit of Eq. (1).

The first iteration substitutes
beF�0�

A for
beFA in the rhs of

Eq. (11), yieldingbeF�1�
A 2

beF�0�
A � 2ka

beGeff

√
NX

i�1

W�Lfii�Ii 2 cW�L�

!
3

beGeff
bF0

A . (15)

Because Ii
beGeff� �l, s�bF0

A� �l� � L21 beGeff� �lfii , s�bF0
A� �lfii�

and all particles are equivalent, Eq. (15) vanishes in the
Tlim for �l � �0.

The leading nonconstant term in Eq. (1), the main ob-
jective of our derivation, arises from the second iterationbeF�2�

A 2
beF�1�

A � k2
a

beGeff

√
NX

i�1

W�Lfii�Ii 2 cW �L�

!

3
beGeff

√
NX

j�1

W�Lfij�Ij 2 cW�L�

!beGeff
bF0

A .

(16)

In the desired limit, we may cancel cW �L� from the first
bracket and

PN
jfii�1 W�Lfij�Ij 2 cW�L� from the sec-

ond, obtaining

DeP�2�
A �s� � eP�2�

A 2 eP�1�
A

� Tlim lim
�l!�0

NX
i�1

�ka
beGeffW�Lfii�Ii�2 beGeff bF0

A .

(17)
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The first integration eliminates li , and the second was
already performed explicitly for �lfii � �0 in Eq. (10a).
Hence we obtain

DeP�2�
A �s� � c�kaW�0�

beGeff��0, s��2egeff�s� . (18)

Using Eqs. (7), (9), and (10) we find, in the limit of small
s, that

DeP�2�
A �s� �

cK2
eq

�1 1 cKeq�3

1
p

4Ds
. (19)

Its Laplace inverse gives the leading nonconstant term in
Eq. (1) for d � 1 with a � 3, as conjectured by Naumann
et al. [22].

Continuing in a similar fashion, we find for the nth order
term in the thermodynamic limit that

DeP�n�
A �s� � �2ka�n lim

�l!�0

X
�2pc�p

nY
j�1

�
beGeffW�Lfiij �Iij �

3
beGeff

pY
k�1

d�lk� . (20)

The operator product involves n terms for p distinct B
particles. Each particle, Bij (1 # ij # p), encounters A at
least twice, hence n $ 2p. In each encounter this particle
binds, and the remaining N 2 1 particles diffuse freely
until it unbinds. The sum in Eq. (20) is performed over
all possible p (1 # p # �n�2�) and over distinct permu-
tations of identical particles.

To show that higher order terms do not contribute
to the coefficient of t21�2, we use a dimensional
argument. Introducing a dimensionless integration
variable, lj � l

0
j

p
s�D, we find that Ij ~

p
s and

d�lj� ~ d�l0
j��

p
s. In addition, for small s, the dominant

s dependence of the other relevant functions is
beGeff ~ s21

and W ~ s. Thus a term involving p distinct particles
in DeP�n�

A �s� is proportional to s211�n2p��2. As n $ 2p,
the 1�

p
s term comes solely from the second order term

(n � 2) with one particle involved (p � 1). We have
checked this argument by going to third and fourth order.
For n � 3 we also have only p � 1, so that

2DeP�3�
A �s� � c�kaW�0��3�

beGeff��0, s� egeff�s��2

�
cK3

eq

�1 1 cKeq�4

µ
1

4D
1

cKeq

2D

r
s

kd 1 cka

∂
.

(21)

This contributes a t23�2 term.
The next term in the asymptotic expansion comes from

the n � 4 term with p � 2. It goes like 1�t, so that we
extend Eq. (1) for d � 1 by writing

PA�t� �
1

1 1 cKeq
1

cK2
eq

�1 1 cKeq�3

1
�4pDt�1�2

1
2c2K4

eq

�1 1 cKeq�5

1
4pDt

. (22)
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The leading t21�2 term represents a modified pair prob-
lem, and reflects the return probability of a given B par-
ticle to the origin, corrected by the mean-field influence
of all other B’s. Indeed, it arises solely from the second
order term in the expansion and involves in its evaluation
only the coordinates of a single B (p � 1). This means
that asymptotically a given B particle may encounter A at
most twice. To understand the origin of the a � 3 be-
havior (as opposed to the incorrect a � 2 predicted by
the simple SA) we have performed the expansion starting
from Eq. (6). It shows that a � 2 corresponds to ignoring
single encounters with other B particles, which might oc-
cur in between two encounters with a given B. The more
complex many-body effects (p $ 2) occur at intermediate
times, and cannot be described by any kind of modified
pair dynamics.

The proof in three dimensions follows the same prin-
ciples, though it is technically more involved [28]. Again,
we find that Eq. (1) holds, with a � 3 and d � 3. A less
trivial dimensional dependence occurs in the second term
of the expansion, which in three dimensions goes as t25�2

instead of the t21 behavior predicted in one dimension.
In the natural sciences, very few many-body problems

may be solved exactly, even asymptotically. The problem
of obtaining a rigorous derivation for the long-time ap-
proach to equilibrium for reversible binding has remained
open for over a decade. Fortunately, it has now been
possible to solve this problem, and the solution might
hopefully inspire new approaches to other many-body
problems. Our derivation provides a unique proof that both
diffusional and many-body effects exert non-negligible
influence on bimolecular reactivity in the reversible case.
Since reversibility is the rule rather than the exception,
advances in the field of reversible diffusion influenced
reactions should eventually lead to reassessment of the
classical description of chemical kinetics.
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