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The Peres-Horodecki criterion of positivity under partial transpose is studied in the context of sepa-
rability of bipartite continuous variable states. The partial transpose operation admits, in the continuous
case, a geometric interpretation as mirror reflection in phase space. This recognition leads to uncer-
tainty principles, stronger than the traditional ones, to be obeyed by all separable states. For all bipartite
Gaussian states, the Peres-Horodecki criterion turns out to be a necessary and sufficient condition for
separability.

PACS numbers: 03.67.–a, 03.65.Bz, 42.50.Dv, 89.70.+c
Entanglement or inseparability is central to all branches
of the emerging field of quantum information and quan-
tum computation [1]. A particularly elegant criterion for
checking if a given state is separable or not was proposed
by Peres [2]. This condition is necessary and sufficient for
separability in the 2 3 2 and 2 3 3 dimensional cases, but
ceases to be a sufficient condition in higher dimensions, as
shown by Horodecki [3].

While a major part of the effort in quantum informa-
tion theory has been in the context of systems with finite
number of Hilbert space dimensions, more specifically the
qubits, recently there has been much interest in the canoni-
cal continuous case [4–9]. We may mention, in particular,
the experimental realization of quantum teleportation of
coherent states [10]. It is therefore important to be able to
know if a given state of a bipartite canonical continuous
system is entangled or separable.

With increasing Hilbert space dimension, any test for
separability will be expected to become more and more
difficult to implement in practice. In this paper we show
that in the limit of infinite dimension, corresponding to
continuous variable bipartite states, the Peres-Horodecki
criterion leads to a test that is extremely easy to implement
[11]. Central to our work is the recognition that the par-
tial transpose operation acquires, in the continuous case,
a beautiful geometric interpretation as mirror reflection in
the Wigner phase space. Separability forces on the second
moments (uncertainties) a restriction that is stronger than
the traditional uncertainty principle; even commuting vari-
ables need to obey an uncertainty relation. This restriction
is used to prove that the Peres-Horodecki criterion is a nec-
essary and sufficient separability condition for all bipartite
Gaussian states.

Consider a single mode described by annihilation op-
erator â � �q̂ 1 ip̂��

p
2, obeying the standard commuta-

tion relation �q̂, p̂� � i, which is equivalent to �â, ây� �
1. There is a one-to-one correspondence between den-
sity operators and c-number Wigner distribution functions
W�q, p� [12]. The latter are real functions over the phase
space and satisfy an additional property coding the non-
negativity of the density operator. It follows from the
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definition of Wigner distribution that the transpose opera-
tion T , which takes every r̂ to its transpose r̂T , is equiva-
lent to a mirror reflection in phase space:

r̂ ! r̂T () W�q, p� ! W�q, 2p� . (1)

Mirror reflection is not a canonical transformation in phase
space, and cannot be implemented unitarily in the Hilbert
space. This is consistent with the fact that while T is linear
at the density operator level, it is antilinear at the state
vector or wave function level (time reversal).

Now consider a bipartite system of two modes described
by annihilation operators â1 � �q̂1 1 ip̂1��

p
2 and â2 �

�q̂2 1 ip̂2��
p

2. Let Alice be in possession of mode 1 and
let mode 2 be in the possession of Bob. By definition, a
quantum state r̂ of the bipartite system is separable if and
only if r̂ can be expressed in the form

r̂ �
X
j

pjr̂j1 ≠ r̂j2 , (2)

with non-negative pj’s, where r̂j1’s and r̂j2’s are density
operators of the modes of Alice and Bob, respectively. It
is evident from (2) that partial transpose operation (i.e.,
transpose of the density matrix with respect to only the
second Hilbert space under Bob’s possession), denoted
PT , takes a separable density operator necessarily into a
non-negative operator, i.e., into a bona fide density matrix.
This is the Peres-Horodecki separability criterion.

In order to study the partial transpose operation in the
Wigner picture, it is convenient to arrange the phase space
variables and the Hermitian canonical operators into four-
dimensional column vectors

j � � q1 p1 q2 p2 �, ĵ � � q̂1 p̂1 q̂2 p̂2 � .

The commutation relations take the compact form [13]

�ĵa , ĵb� � iVab , a, b � 1, 2, 3, 4 ;

V �

µ
J 0
0 J

∂
, J �

µ
0 1

21 0

∂
. (3)

Wigner distribution and the density operator are related
through the definition [12,13]
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W�q, p� � p22
Z

d2q0�q 2 q0jr̂jq 1 q0�

3 exp�2iq0 ? p� , (4)

where q � �q1, q2�, p � �p1, p2�. It follows from this
definition that the partial transpose operation on the bipar-
tite density operator transcribes faithfully into the follow-
ing transformation on the Wigner distribution:

PT : W�q1, p1, q2, p2� ! W�q1, p1, q2, 2p2� . (5)

This corresponds to a mirror reflection or “local time re-
versal” which inverts only the p2 coordinate,

PT : j ! Lj, L � diag�1, 1, 1, 21� .

And the Peres-Horodecki separability criterion reads as
follows: if r̂ is separable, then its Wigner distribution
necessarily goes over into a Wigner distribution under
the phase space mirror reflection L. W�Lj�, like W�j�,
should possess the “Wigner quality,” for any separable bi-
partite state. Roughly speaking, local time reversal, de-
fined by L as above, is a symmetry in the subspace of
separable states.

The Peres-Horodecki criterion has important implica-
tions for the uncertainties or second moments. Given a
bipartite density operator r̂, let us define Dĵ � ĵ 2 �ĵ�,
where �ĵa� � trĵar̂. The four components of Dĵ obey
the same commutation relations as ĵ. Similarly, we define
Dja � ja 2 �ja� where �ja� is average with respect to
the Wigner distribution W�j�, and it equals �ĵa�. The un-
certainties are defined as the expectations of the Hermitian
operators �Dĵa , Dĵb	 � �DĵaDĵb 1 DĵbDĵa��2:

��Dĵa , Dĵb	� � tr��Dĵa , Dĵb	r̂�

�
Z

d4j DjaDjbW�j� . (6)

Let us now arrange the uncertainties or variances into
a 4 3 4 real variance matrix V , defined through Vab �
��Dĵa , Dĵb	�. Then we have the following compact state-
ment of the uncertainty principle [13]:

V 1
i
2

V $ 0 . (7)

Note that (7) implies, in particular, that V . 0.
The uncertainty principle (7) is a direct consequence

of the commutation relation (3) and the non-negativity of
r̂. It is equivalent to the statement that Q̂ � ĥĥy,
with ĥ � c1ĵ1 1 c2ĵ2 1 c3ĵ3 1 c4ĵ4, is non-
negative for every set of complex coefficients ca ,
and hence �Q̂� � tr�Q̂r̂� $ 0. Viewed somewhat dif-
ferently, it is equivalent to the statement that for every
pair of real four-vectors d, d0 the Hermitian opera-
tors X̂�d� � dT ĵ � d1q̂1 1 d2p̂1 1 d3q̂2 1 d4p̂2 and
X̂�d0� � d0T ĵ � d0

1q̂1 1 d0
2p̂1 1 d0

3q̂2 1 d0
4p̂2 obey

����DX̂�d����2� 1 ����DX̂�d0����2� $ jd0TVdj

� jd1d0
2 2 d2d0

1

1 d3d0
4 2 d4d0

3j . (8)
The right hand side equals j�X̂�d�, X̂�d0��j. Under the
Peres-Horodecki partial transpose the Wigner distribution
undergoes mirror reflection, and it follows from (8) that the
variances are changed to V ! Ṽ � LVL. Since W�Lj�
has to be a Wigner distribution if the state under considera-
tion is separable, we have

Ṽ 1
i
2

V $ 0, Ṽ � LVL , (9)

as a necessary condition for separability. We may write it
also in the equivalent form

V 1
i
2

Ṽ $ 0, Ṽ � LVL �

µ
J 0
0 2J

∂
, (10)

so that separability of r̂ implies an additional restriction
that has the same form as (8), with jd0TVdj on the right
hand side replaced by jd0T Ṽdj. Combined with (8), this
restriction reads

����DX̂�d����2� 1 ����DX̂�d0����2� $ jd1d0
2 2 d2d0

1j

1 jd3d0
4 2 d4d0

3j, ; d, d0.
(11)

This restriction, to be obeyed by all separable states, is
generically stronger than the usual uncertainty principle
(8). For instance, let X̂�d� commute with X̂�d0�; i.e.,
let d0T Vd � 0. If the state is separable, then X̂�d� and
X̂�d0� cannot both have arbitrarily small uncertainties un-
less d0TṼd � 0 as well, i.e., unless d1d0

2 2 d2d0
1 � 0 �

d3d0
4 2 d4d0

3. As an example, X̂ � x̂1 1 p̂1 1 x̂2 1 p̂2
and Ŷ � x̂1 2 p̂1 2 x̂2 1 p̂2 commute, but the sum of
their uncertainties in any separable state is $4.

The Peres-Horodecki condition (11) can be simplified.
Real linear canonical transformations of a two-mode
system constitute the ten-parameter real symplectic group
Sp�4, R�. For every real 4 3 4 matrix S [ Sp�4, R�, the
irreducible canonical Hermitian operators ĵ transform
among themselves, leaving the fundamental commutation
relation (3) invariant:

S [ Sp�4, R�: SVST � V ,

ĵ ! ĵ0 � Sĵ, �ĵ0
a , ĵ0

b� � iVab . (12)

The symplectic group acts unitarily and irreducibly on
the two-mode Hilbert space [14]. Let U�S� represent the
(infinite dimensional) unitary operator corresponding to
S [ Sp�4, R�. It transforms the bipartite state vector jc�
to jc 0� � U�S�jc�, and hence the density operator r̂ to
r̂0 � U�S�r̂U�S�y. This transformation takes a strikingly
simple form in the Wigner description, and this is one rea-
son for the effectiveness of the Wigner picture in handling
canonical transformations:

S: r̂ ! U�S�r̂U�S�y () W�j� ! W�S21j� .
(13)

The bipartite Wigner distribution simply transforms as a
scalar field under Sp�4, R�. It follows from (6) that the
variance matrix transforms in the following manner:

S [ Sp�4, R�: V ! V 0 � SVST . (14)
2727



VOLUME 84, NUMBER 12 P H Y S I C A L R E V I E W L E T T E R S 20 MARCH 2000
The uncertainty relation (7) has an Sp�4, R� invariant form
(recall SVST � V). But separable states have to respect
not just (7), but also the restriction (9), and this require-
ment is preserved only under the six-parameter Sp�2, R� ≠
Sp�2, R� subgroup of Sp�4, R� corresponding to indepen-
dent local linear canonical transformations on the subsys-
tems of Alice and Bob:

Slocal [ Sp�2, R� ≠ Sp�2, R� , Sp�4, R�:

Slocal �

µ
S1 0
0 S2

∂
, S1JST

1 � J � S2JST
2 . (15)

It is desirable to cast the Peres-Horodecki condition (11)
in an Sp�2, R� ≠ Sp�2, R� invariant form. To this end, let
us write the variance matrix V in the block form

V �

µ
A C

CT B

∂
. (16)

The physical condition (7) implies A $ 1�4, B $ 1�4. As
can be seen from (14), the local group changes the blocks
of V in the following manner:

A ! S1AST
1 , B ! S2BST

2 , C ! S1CST
2 .

Thus, the Sp�2, R� ≠ Sp�2, R� invariants associated
with V are I1 � detA, I2 � detB, I3 � detC, and
I4 � trAJCJBJCT J (detV is an obvious invariant, but it
is a function of the Ik’s, namely, detV � I1I2 1 I2

3 2 I4).
We claim that the uncertainty principle (7) is equivalent

to the Sp�2, R� ≠ Sp�2, R� invariant statement

detAdetB 1

µ
1
4

2 detC

∂2

2

tr�AJCJBJCTJ� $
1
4

�detA 1 detB� .

(17)

To prove this result, first note that (7) and (17) are equiva-
lent for variance matrices of the special form

V0 �

0
BBBB@

a 0 c1 0
0 a 0 c2
c1 0 b 0
0 c2 0 b

1
CCCCA . (18)

But any variance matrix can be brought to this special form
by effecting a suitable local canonical transformation cor-
responding to some element of Sp�2, R� 3 Sp�2, R�. In
view of the manifest Sp�2, R� ≠ Sp�2, R� invariant struc-
ture of (17), it follows that (7) and (17) are indeed equiva-
lent for all variance matrices.

Under the Peres-Horodecki partial transpose or mirror
reflection, we have V ! Ṽ � LVL. That is, C ! Cs3
and B ! s3Bs3, while A remains unchanged [s3 is the
diagonal Pauli matrix: s3 � diag�1, 21�]. As a conse-
quence, I3 � detC flips signature while I1, I2, and I4 re-
main unchanged. Thus, condition (9) for Ṽ takes a form
identical to (17) with only the signature in front of detC in
the second term on the left hand side reversed. Thus the
2728
requirement that the variance matrix of a separable state
has to obey (9), in addition to the fundamental uncertainty
principle (7), takes the form

detAdetB 1

µ
1
4

2 jdetCj

∂2

2

tr�AJCJBJCTJ� $
1
4

�detA 1 detB� .

(19)

This is the final form of our necessary condition on the
variance matrix of a separable bipartite state. This con-
dition is invariant not only under Sp�2, R� ≠ Sp�2, R� but
also under mirror reflection, as it should be. It consti-
tutes a complete description of the implication the Peres-
Horodecki criterion has for the second moments.

To summarize, conditions (7), (8), and (17) are equiva-
lent statements of the fundamental uncertainty principle,
and hence will be satisfied by every physical state. The
mutually equivalent statements (9), (11), and (19) consti-
tute the Peres-Horodecki criterion at the level of the sec-
ond moments, and should necessarily be satisfied by every
separable state. Interestingly, states with detC $ 0 defi-
nitely satisfy (19), which in this case is subsumed by the
physical condition (17).

For the standard form V0, our condition (19) reads

4�ab 2 c2
1� �ab 2 c2

2� $ �a2 1 b2� 1 2jc1c2j 2 1�4 .

But the point is that the separability check (19) can be
applied directly on V , with no need to go to the form V0.

We will now apply these results to Gaussian states. The
mean values �ĵa� can be changed at will using local uni-
tary displacement operators, and so assume without loss
of generality �ĵa� � 0. A (zero-mean) Gaussian state is
fully characterized by its second moments, as seen from
the nature of the Wigner distribution

W�j� � �4p2
p

detV �21 exp

µ
2

1
2

jT V21j

∂
.

Theorem: The Peres-Horodecki criterion (19) is a nec-
essary and sufficient condition for separability, for all bi-
partite Gaussian states.

We begin by noting, in view of the P representation

r̂ �
Z

d2z1 d2z2 P�z1, z2� jz1� �z1j ≠ jz2� �z2j ,

that a state which is classical in the quantum optics sense
[non-negative P�z1, z2�] is separable. Since the local
group Sp�2, R� ≠ Sp�2, R� does not affect separability,
any Sp�2, R� ≠ Sp�2, R� transform of a classical state is
separable too. Finally, a Gaussian state is classical if and
only if V 2

1
2 $ 0. We will first prove a pretty little

result.
Lemma: Gaussian states with detC $ 0 are sepa-

rable. First consider the case detC . 0. We can
arrange a $ b, c1 $ c2 . 0 in the special form V0
in (18). Let us do a local canonical transformation
Slocal � diag�x, x21, x21, x�, corresponding to reciprocal
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local scalings (squeezings) at the Alice and Bob ends, and
follow it by S0

local � diag� y, y21, y, y21�, corresponding
to common local scalings at these ends. We have

V0 ! V 0
0 �

0
BBBB@

y2x2a 0 y2c1 0
0 y22x22a 0 y22c2

y2c1 0 y2x22b 0
0 y22c2 0 y22x2b

1
CCCCA .

Choose x such that c1��x2a 2 x22b� � c2��x22a 2

x2b�. That is, x � ��c1a 1 c2b���c2a 1 c1b��1�4. Then
V 0

0 acquires such a structure that it can be diagonalized by
rotation through equal amounts in the q1, q2 and p1, p2
planes:

V 0
0 ! V 00

0 � diag�k1, k0
1, k2, k0

2� ;

k6 �
1
2

y2�x2a 1 x22b

6 ��x2a 2 x22b�2 1 4c2
1�1�2	 ,

k0
6 �

1
2

y22�x22a 1 x2b

6 ��x22a 2 x2b�2 1 4c2
2�1�2	 .

Such an equal rotation is a canonical transformation; it
preserves the uncertainty principle, since it is canonical,
and the pointwise non-negativity of the P distribution,
since it is a rotation. For our diagonal V 00

0 , the uncer-
tainty principle V 00

0 1
i
2V $ 0 simply reads that the prod-

uct k2k0
2 $ 1�4. It follows that we can choose y such

that k2, k0
2 � 1�2 (for instance, choose y such that k2 �

k0
2), i.e., V 00

0 $ 1�2. Since V 0
0 and V 00

0 are rotationally re-
lated, this implies V 0

0 $ 1�2, and hence V 0
0 corresponds to

positive P distribution or separable state. This in turn im-
plies that the original V corresponds to a separable state,
since V and V 0

0 are related by local transformation. This
completes proof for the case detC . 0.

Now suppose detC � 0, so that in V0 we have c1 $ 0 �
c2. Carry out a local scaling corresponding to Slocal �
diag�

p
2a, 1�

p
2a,

p
2b, 1�

p
2b�, taking V0 ! V 0

0; the di-
agonal entries of V 0

0 are �2a2, 1�2, 2b2, 1�2�, and the two
nonzero off-diagonal entries equal 2abc1. With this form
for V 0

0, the uncertainty principle V 0
0 1

i
2V $ 0 implies

V 0
0 $ 1�2, establishing separability of the Gaussian state.

This completes proof of our lemma.
Proof of the main theorem is completed as follows.

We consider in turn the two distinct cases detC , 0 and
detC $ 0. Suppose detC , 0. Then there are two pos-
sibilities. If (19) is violated, then the Gaussian state is
definitely entangled since (19) is a necessary condition for
separability. If (19) is respected, then the mirror reflected
state is a physical Gaussian state with detC . 0 (recall
that mirror reflection flips the signature of detC), and is
separable by the above lemma. This implies separability
of the original state, since a mirror reflected separable state
is separable. Finally, suppose detC $ 0. Condition (19) is
definitely satisfied since it is subsumed by the uncertainty
principle (17) in this case. By our lemma, the state is sepa-
rable. This completes proof of the theorem.

We used the scaled commutation relation �q̂, p̂� � i.
Reinserting a scale parameter m $ 0, this relation
becomes �q̂, p̂� � m2i, the inequality (7) becomes
V 1

i
2m2V $ 0, and the 1�4 on the left and right hand

sides of (17) and (19) gets replaced by m2�4.
Finally, our analysis has been presented in the Wigner

picture. But the geometric interpretation of the partial
transpose as mirror reflection in phase space holds for the
other (s-ordered) quasiprobabilities as well.

The author thanks S. Chaturvedi, R. Jagannathan, and
N. Mukunda for insightful comments.

Note added.—Since completion of this work, a preprint
by Duan et al. [15] describing an interesting approach to
separability has appeared. One would have expected the
insufficiency of the Peres-Horodecki criterion for separa-
bility to grow with dimension, rendering this criterion of
little value in the limit of infinite dimension. Therefore
these authors aim at an inseparability condition indepen-
dent of the Peres-Horodecki criterion. But our approach
simply exploits the geometric flavor the Peres-Horodecki
partial transpose criterion acquires in this infinite limit.
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