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Evaporation of the Pancake-Vortex Lattice in Weakly Coupled Layered Superconductors
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We calculate the melting line of the pancake-vortex system in a layered superconductor, interpolating
between two-dimensional (2D) melting at high fields and the zero-field limit of single-stack evaporation.
Long-range interactions between pancake vortices in different layers permit a mean-field approach, the
“substrate model,” where each 2D crystal fluctuates in a substrate potential due to the vortices in other
layers. We find the thermal stability limit of the 3D solid, and compare the free energy to a 2D liquid
to determine the first-order melting transition and its jump in entropy.

PACS numbers: 74.60.Ge, 74.80.Dm
The pancake-vortex lattice in layered superconductors
defines a tunable soft matter system with astonishing prop-
erties [1]. Among them, the thermodynamic phase transi-
tion of vortex-lattice melting and its first-order character
is now experimentally well established [2,3], but questions
remain as to which correlations are lost at the transition
[4]. Theoretically, the position of the melting line can be
estimated with a Lindemann criterion [5,6], but a more de-
tailed description of melting is required to determine the
characteristics of the transition. The challenge in defin-
ing a theoretical scheme describing vortex-lattice melting
follows from the complexity of the vortex system in real
superconductors combined with the general lack of exact
theories of melting.

In a moderately anisotropic material, such as
YBa2Cu3O7, the vortex crystal melts to a line liquid
and numerical simulations have treated this in detail
[7]. In Bi2Sr2CaCu2O8 (BSCCO), however, the coupling
between layers is so weak that the layered structure (with
spacing d) plays a crucial role, and the vortex matter
acts as a collection of interacting two-dimensional (2D)
vortices, or pancake vortices. Rather than using numerical
simulations [8,9], we describe here a novel analytic
treatment to track the melting line through the B-T phase
diagram in the extreme anisotropic limit of zero Josephson
coupling between layers. In this limit the 3D pancake-
vortex lattice (PVL) remains stable at low temperatures
due to an attractive electromagnetic interaction between
pancake vortices in different layers, with range l ¿ d (l
is the in-plane penetration depth). Changing the magnetic
field tunes the relative importance of this attractive inter-
layer interaction and the long-range repulsion between vor-
tices in the same layer. At high fields, B ¿ Bl � F0�l2,
the in-plane interactions dominate and the 3D lattice
melts to independent 2D liquids (a pancake-vortex
gas) close to the 2D melting temperature T2D

m �
´0d�70 [10] [where ´0 � �F0�4pl�2]. At lower fields
the interlayer attraction stabilizes the lattice and increases
the melting temperature. In the low-field limit of weakly
coupled 1D stacks, the crystal melts below the evaporation
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transition of an isolated stack of pancake vortices [11]
located at the Berezinskii-Kosterlitz-Thouless (BKT)
vortex unbinding transition [12] of an isolated layer at
TBKT � ´0d�2 � 35T2D

m . The field regime B � Bl

where the melting line interpolates between the above
limits then spans a factor �35 in “reduced” temperature
T�´0d (in real superconductors ´0 vanishes as Tc is
approached, and the real temperature ratio TBKT�T2D

m will
be smaller). Before reaching zero field, the melting line is
cut by a competing low-field reentrant transition to a dilute
liquid of stacks with exponentially weak interactions [1].
A Lindemann analysis [6] tells us that at T � ´0d�2
reentrant melting occurs at a field below 1022Bl.

Ignoring reentrance, we have a 3D melting line that
interpolates between a 1D stack evaporation (exactly de-
scribed by 2D BKT theory) and a 2D melting transition
usually described by a BKT-type mechanism of disloca-
tion pair unbinding. Both limits are well described by a
self-consistent approximation and we here generalize this
to all magnetic fields. Our self-consistent method relies
on the long range of the interlayer attractions; each pan-
cake vortex feels the attractive force of pancake vortices in
�l�d other layers. Therefore the fluctuations in pancake-
vortex positions may be averaged, leading to an accurate
“mean-field” approach where the 2D lattice in one layer
sits in a substrate potential due to the attraction of the vor-
tex stacks in all other layers. With this substrate model
we calculate the fluctuations of individual pancake vor-
tices, which in turn smears the substrate potential, and we
solve self-consistently. The upper bound in temperature to
a self-consistent solution leads to an instability line which
we calculate in this paper. We then determine the melting
line by comparing the free energy of the 3D PVL to the
free energy of a collection of 2D liquids, using numerical
results for the 2D system [10].

The evaporation at TBKT of a single stack of pancake
vortices occurs because each element is only logarithmi-
cally bound to the stack: A pancake vortex in a layered
superconductor generates supercurrents within each layer,
resulting in a pairwise interaction energy [13],
© 2000 The American Physical Society
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where n is the number of layers separating the two vortices,
and R is the in-plane distance. The form of this interaction
for different limits is well documented [1]: the in-plane
repulsion is V0�R� � 22´0d ln�R�L� (where L is the
system-size cutoff) and the out-of-plane attraction has the
large R limit, Vnfi0�R� � ´0d�d�l�e2nd�l ln�R�L�. This
implies that the energy to pull a single pancake vortex (of
core size j) from a straight stack is 2´0d ln�R�j� when
R ¿ l and the entropy will unbind the pancake vortices
above TBKT [11].

This stack evaporation is easily reproduced within a
self-consistent substrate model [14]. Here, each pancake
vortex is subject to a quadratic potential, but with a
strength chosen to match the thermal average ��· · ·�� of
the curvature in the real potential [15], Vs�u0� �

1
2asu

2
0,

where un is the nth pancake vortex displacement, and
as �

P
nfi0�≠2

ux
0
Vn�un 2 u0��. Given the long range

of the interactions, we can ignore correlations in the
pancake vortex fluctuations and use the identity for
Gaussian fluctuations that �exp�2iK ? �un 2 u0�	�� �
exp�2K2�u2��2�, to give

as��u2�� � 2
X
nfi0

Z d2K
�2p�2 K2

x Vn�K� exp

∑
2

K2�u2�
2

∏
,

(2)

where Vn�K� �
R

d2Re2iK?RVn�R�. The equipartition
theorem for a harmonic potential, �u2� � 2T�as, allows us
to solve Eq. (2) self-consistently: for large displacements
�u2� ¿ l2, the limiting form is as � ´0d���u2� 1 2l2�,
which has the solution �u2� � 2l2��1 2 �2T�´0d�	, di-
verging at the evaporation temperature TBKT � ´0d�2.

We now extend this self-consistent analysis to the full
3D system at finite fields. We consider the full 2D fluctua-
tions of the crystal in each layer, sitting on a substrate due
to the stacked vortex crystals in the other layers. Before
deriving this in detail, we give a quick-and-dirty derivation
of evaporation at small fields. Close enough to TBKT the
instability occurs when l2 ø �u2� ø a2

0, for a vortex den-
sity ny � B�F0 � �2�

p
3 �a22

0 . In this limit the substrate
potential picks up a negative background contribution (see
below), as � ´0d�22pny 1 1���u2� 1 2l2��. Inserting
this to the equipartition result gives the quadratic equa-
tion in �u2�, �u2� � �2T�´0d� �2l2 1 �u2� 1 2pny�u2�2	,
which only has solutions below a temperature given by
�1 2 TBKT�T �2 2 16pnyl2 � 0, and the instability line
approaches the zero-field transition in the form

Bu � Bl�1 2 T�TBKT�2, T ! TBKT . (3)

Note also that this instability occurs when the fluctuations
reach the condition �u2� � a0l. This contrasts with the of-
ten used Lindemann criterion for melting at �u2� � c2

La2
0

(see e.g., [6]) and corresponds to a field dependent Lin-
demann number cL � �B�Bl�1�4 (see [9] where a field-
dependent cL was also found).

A precise treatment that can be used at all fields must
include the elastic distortions of the lattice within each
layer. Within the self-consistent harmonic approxima-
tion (SCHA) plus substrate model the average energy cost
for these distortions is given by a quadratic form, inte-
grated over all 2D modes in the Brillouin zone, Hh�u0	 �
�1�8p2�

R
BZ d2Ku0

i �K�Fij�K�u0
j �2K� where
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(4)
with Rm and Qm the real and reciprocal lattice vectors
and fij�Q� � QiQj�4p�Q2� exp�2Q2�u2��2	. The first
two terms in (4) are the 2D elasticity and the last is the
contribution from the substrate. Again, we have ignored
correlations in displacements �um

i �Rm�un
j �Rn�� � dmn 3

dmndij�u2��2 in the last line. Note that the Qm � 0 sub-
strate term is canceled by the Qm � 0 part of the second
2D-elastic term. This is a reflection of the long range diver-
gences in the 2D system with log (Coulomb) interactions,
which do not exist for the 3D system of stacks where the
circulation currents are screened beyond l.

The elastic matrix decomposes to transverse
�dij 2 K̂iK̂j�Fij�K� � c66�K�K2 1 nyas and lon-
gitudinal K̂iK̂jF

ij�K� � c11�K�K2 1 nyas projections,
where c66 and c11 are the dispersive shear and com-
pression moduli, and as is the substrate strength, as �
2p´0dny

P
Qmfi0 exp�2Q2

m�u2��2	��1 1 l2Q2
m�. The

�u2� ! 0 limit of c66 and c11 recovers the usual form
for the elasticity of a 2D vortex lattice [16], with a shear
modulus c0

66 � ny´0d�4 and a diverging compression
modulus c0
11�K� � 4p´0dn2

y�K2 at small K . A finite �u2�
softens these moduli, although the diverging compression
modulus remains [15]. To solve self-consistently for �u2�
we use the equipartition result

�u2� � T
Z

BZ

d2K
�2p�2 �F21	ii��u2�, K�

�
T

4pc66
ln

µ
1 1

c66K2
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1

T
4pc11�KBZ� 1 as

,

(5)

where in the last line we have used a nondispersive c66 and
a dispersive c11, and have taken a circular Brillouin zone
with KBZ �

p
4p�a0. Note how the substrate potential

cuts off the log divergence for the 2D shear fluctuations.
The self-consistent Eqs. (4) and (5) determine �u2�.

Above a temperature Tu there are no solutions, giving an
upper bound to the melting transition. However, in [15]
it was shown that the SCHA underestimates the degree
2699
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of anharmonic thermal softening of a 2D lattice. Using a
diagrammatic perturbation theory about the harmonic ap-
proximation, one finds that the SCHA includes only simple
diagrams with even vertices; odd terms in the anharmonic-
ity are neglected. In [15] a new technique that includes
cubic anharmonicities, the two-vertex SCHA, is shown to
give results that compare well to numerical simulations. In
particular, a thermal instability of the lattice occurs much
sooner than predicted by the simple SCHA. In Fig. 1 we
show the instability line of the PVL in the B-T phase dia-
gram using the two-vertex SCHA. The line interpolates be-
tween at small fields and T2D

m at high fields. Also shown
is the significant thermal softening of both c66 and as at
B � Bl with the resulting anharmonic contributions (be-
yond linear in T ) for �u2�.

The above instability line marks only the upper tempera-
ture limit of the solid phase. A true first-order transition
occurs when the free energies of two phases cross. For
melting transitions it is often difficult to accurately deter-
mine the free energy of the liquid. We can make progress
for PVL melting, as the liquid state behaves to a good ap-
proximation as uncoupled 2D liquids in each layer. The
free energy of a 2D liquid with log interactions can be
extracted from numerical simulations [10]. A crucial in-
gredient is that the free energy is known exactly [17] at
one special temperature T � ´0d. For the solid we cal-
culate the free energy of a 2D crystal on a self-consistent
substrate. We must be careful to take the same normaliza-
tion in both phases: as in [17] we normalize with respect
to the ideal gas of N pancakes, Z�H � 0� � 1, and define
the partition function,

Z �
1

N!

Z Y
i

µ
ny

e

∂
d2Rie

2H�Ri	�T , (6)

fixing the free energy, measured from the ideal gas, as
F � 2T lnZ. We write H � H2D 1 Hs where H2D �
�N�2� �

P
Rmfi0 V0�Rm� 2 ny

R
d2RV0�R�	 and Hs �

�N�2� �
P

Rm,nfi0 Vn�Rm� 1 ny

R
d2RV0�R�	 are the 2D

interaction term and substrate energy, respectively [18].
In the solid, the free energy of harmonic fluctuations

is straightforward to calculate. The right-hand side of
the inequality F # Fh 1 �H 2 Hh�h is minimized by the
SCHA (see [15]) where Hh is defined by (4). The har-
monic free energy of 2D fluctuations is

Fh � 2
NT
2ny

Z
BZ

d2K
�2p�2

∑
ln
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pTn2

y

e�c66K2 1 nyas�

∂

1 ln

µ
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(7)
The correction part of the variational free energy has con-
tributions from H2D and Hs. Ignoring the small anhar-
monic part of the 2D energy, the difference �H2D 2 Hh

2D�h
is just the ground state energy (which is not included in
Hh

2D). In [17] the energy for a 2D lattice of log-interacting
particles is found to be E0

2D � 0.749N´0d. The substrate
energy correction, Es � �Hs 2 Hh

s �h, is
2700
0 0.1 0.2 0.3 0.4 0.5
T/ε0d

0

0.5

1

1.5

2

B
/B

λ

0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0

0.02

<
u2 >

/a
02

0

1

2

a s/n
ε 0d

0 0.01 0.02 0.03 0.04

0

0.1

0.2

c 66
/n

ε 0dc66

αs

<u
 2
>

SCHA

2V−SCHA TBKT

Tm
2D

Pancake
GasPVL

FIG. 1. The instability line for the PVL in the B-T plane cal-
culated with the two-vertex SCHA. The line goes asymptotically
to the 2D melting temperature at high fields, and ends at TBKT
at zero field. Left inset: shear modulus c66, substrate strength
as, and pancake fluctuation width �u2� versus temperature at
B � Bl. Right inset: low-field zoom of the instability line
showing the result (dashed) of the simple SCHA scheme for
comparison: the SCHA overestimates the stability of the lattice
at high fields. We do not include here the intrinsic temperature
dependence in real superconductors of the penetration depth and
the energy scale ´0 (but see Fig. 2).
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and the sum Fh 1 E0
2D 1 Es is the variational free energy.

In the liquid phase, �Hs� is very small and we should
find the free energy of a 2D liquid. The internal energy
U�G� (with G � 2´0d�T ) is found from simulations [10],
U�G� � �20.751 1 0.880G20.74 2 0.209G21.7�N´0d .

(9)
From the relation F � U 1 T≠TF, the excess free
energy can be written as GFliq�G� � G0Fliq�G0� 1RG

G0
U�G0�dG0. We know the value at G0 � 2, where

Fliq�2� � 0.081´0dN [17], so we can integrate (9) to give
(with t � T�´0d),

Fliq � �20.751 2 1.287t 1 2.027t0.74 1 0.092t1.7�
3 N´0d . (10)

Using these results we can plot the free energy of both
phases and see where they cross; a typical example at
B � Bl is shown in the inset of Fig. 2. Calculating the
crossing point numerically at different fields, we find a
melting line (see Fig. 2) just below the stability limit of
the lattice that approaches zero field at T � 0.47´0d.

The jump in slope S � 2≠T F gives a latent heat
TDS � DU. In Fig. 2 we plot the entropy jump per
pancake vortex as a function of the transition tempera-
ture. At high fields (small T ) it approaches the value
Dsy � 0.4kBTBKT , consistent with 2D simulations [10]
and simple estimates [19]. At low fields (T � 0.5´0d)
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FIG. 2. The full line in the upper graph shows the melting line
Bm�T� of the pancake vortex lattice as calculated by comparing
the free energies of the solid and liquid phases. The dashed
line is the stability limit Bu�T � of the PVL as shown in Fig. 1.
The inset shows the free energy comparison at B � Bl. The
lower graph gives the entropy jump per pancake vortex Dsy .
Also shown are the real scales of T and B assuming l�T� �
l�0���1 2 �T�Tc0�2	1�2, with l�0� � 2000 Å, d � 15 Å, and
Tc0 � 100 K. The low-field reentrant melting line, not shown
here, will cut Bm�T� below 1022Bl.

the latent heat appears to weakly diverge as T ! TBKT .
We understand this as the energy of the liquid is
roughly constant, U�T � TBKT� � 20.219N´0d, while
the energy of the solid is dominated by the substrate
term, Es � N´0d ln�l�a0� so that the latent heat is
DU � 2Es. This gives an entropy jump per vortex
pancake Dsy � DU�NT � kB ln�Bl�B�. This is of the
same form as the entropy difference between an ideal
gas, Ds

gas
y � kB ln�a2

0�j2� and the (reduced phase-space)
solid Dssol

y � kB ln��u2��j2� when �u2� � a0l (as found
above for the low-field instability). We do not include
here the T dependence of l in real systems that gives
extra terms in the latent heat [19].

Previously, melting of the magnetically coupled PVL
has been analyzed numerically [8] and via density func-
tional theory (DFT) of the liquid phase [20]. The early
simulations in [8] find evidence of melting at T �
0.09´0d when B�Bl � 0.2 (close to our melting line).
The DFT gives the stability limit of the liquid and provides
results consistent with ours at fields above 0.5Bl. At
lower fields the DFT gives a liquid instability above our
melting line, calling for further study. Note that the DFT,
numerical simulations, and our calculation do not include
the thermal proliferation of bound vortex-antivortex pairs,
which will effect the results close to TBKT .

To compare to real superconductors our units of field Bl

and of temperature ´0d must be scaled due to the intrinsic
variation in l�T � (diverging at a temperature T0
c ). Doing

this, we find that our melting curve of Fig. 2 lies below
experimental melting lines [2,21] for reasonable choices of
l�T �; this is because the Josephson coupling, neglected in
this paper, becomes important as T0

c is approached [6] and
stiffens the vortex lattice. Our results may be recovered in
experiments by suppressing the Josephson coupling with a
strong in-plane magnetic field.
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