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Pulsed Gradient Spin Echo Nuclear Magnetic Resonance Imaging of Diffusion in Granular Flow
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We derive the formalism to obtain spatial distributions of collisional correlation times for macroscopic
particles undergoing granular flow from pulsed gradient spin echo nuclear magnetic resonance diffusion
data. This is demonstrated with an example of axial motion in the shear flow regime of a 3D granular
flow in a horizontal rotating cylinder at one rotation rate.

PACS numbers: 45.70.Mg, 76.60.Pc
Granular flow phenomena have engendered interdisci-
plinary interest due to their behavior encompassing solid-
like, fluidlike, and gaslike states [1]. They have important
applications in the food, chemical, power, and pharma-
ceutical industries, as well as in the analysis of avalanche
danger and mitigation. Their complex behavior includes
pattern formation in vibrating systems [2] and particle
segregation in rotating drums [3]. Enhanced understand-
ing of granular dynamics is technologically relevant and
can even provide insight into astrophysics and statistical
mechanics [1].

The scarcity of detailed experimental data, caused
mainly by an absence of good techniques to study mo-
tions inside the flow, forms a major barrier to a better
understanding of these flows. Nuclear magnetic resonance
(NMR) is a unique tool that yields not only static but also
dynamic variables such as velocity [4], and it has recently
been applied to granular flows [5,6]. Most NMR studies
image the spin density, i.e., particle concentration, while
the sample is at rest, as is done between shakes [7,8], and
to follow the evolution of segregation in rotating granular
flow [3]. Spin density measurements during motion,
though more difficult, have been reported for vibrating
beds [9] and rotating cylinders [5,6].

Despite perceived difficulties of applying PGSE (pulsed
gradient spin echo) NMR [4] to granular flows [8], PGSE
imaging can display the spatial distribution of correlation
times in granular flow. This is accomplished by measur-
ing both deterministic and random particle dynamics of
granular flow in a horizontal rotating cylinder for a speci-
fied observation window that is comparable to the correla-
tion time. We will consider only a small set of parameters
because of space limitations; however, the extension of
the technique to obtain full flow information will become
clear, later.

To date, there have been only preliminary applications of
PGSE NMR to granular materials [5,6]. Other techniques
to measure particle diffusion are NMR tagging for single
shakes [8], time series photographs [10,11], and diffusing-
wave spectroscopy [12]. The first two methods measure
total displacements after few or many collisions, while the
latter provides statistics of particle displacements within
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3D granular flows for a limited depth, without providing
spatial distributions or anisotropies in the diffusive motion.
Hence, our measurements are unique to be able to spatially
resolve potentially anisotropic microscopic motions.

The theories of Brownian motion and kinetic theory have
been used to model velocity fluctuations in granular shear
flows [13]. The asymptotic diffusion coefficient is
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where the fluctuation velocity u � v 2 �v� with particle
point velocity v and mean velocity �v�, a the particle
diameter, T � 1�3�u2� granular temperature, e the co-
efficient of restitution, y the solids fraction, and g0�y�
the radial distribution function at contact. Equation (1)
is derived assuming an exponential velocity fluctuation
autocorrelation function, �u�t� ? u�0�� � �u2� exp�2t�tc�
[13], true for a stationary Gaussian Markov Ornstein-
Uhlenbeck (O-U) process for the velocity of a particle
with velocity fluctuation correlation time tc.

We will use NMR sequences that are based on PGSE
[14], adapted to imaging. The PGSE signal is the char-
acteristic functional of the stochastic process due to its
Fourier relationship with the propagator of the motion. It is
given by E�t� � �exp�if�t��� � exp�i�f�t��� exp�2a�t��
[4,15,16], where the cumulant expansion [17] is applied
and the brackets �≤� represent an ensemble average of spins
in a volume element. Magnetization mean phase �f�t��
within the ensemble depends on the average motion of the
spins along the applied gradient g�t�, taken to be along z.
A Taylor series of the spin position z�t� relates the phase
�f�t�� � g�z0m0 1 �nz�m1 1 �az�m2 1 . . .� to initial
position z0, mean velocity �nz�, and mean acceleration
�az�, through temporal moments of the applied motion-
sensitizing gradients mn � �1�n!�

Rt
0 tng�t0� dt0. In the

repeated PGSE experiment [Fig. 1(a)] the zeroth gradient
moment m0 is nulled and the phase shift of the magne-
tization is sensitive to mean velocity �nz� while in flow
compensated PGSE [Fig. 1(b)] the zeroth and first gradi-
ent moments m0 and m1 are nulled and the magnetization
phase is modulated due to mean acceleration �az�.
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FIG. 1. Sequence of radio frequency (rf ) and magnetic field
gradient pulses for imaging the spatial distribution of motion.
(a) Velocity sensitive repeated PGSE sequence; (b) velocity
compensated PGSE sequence. An even echo is required for both
experiments in order to refocus the spins diffusing in inhomo-
geneous background magnetic fields. Use of multiple p pulses
permits measurements with D . TE , where TE is the time be-
tween p pulses.

The attenuation of the PGSE signal to second order is
[4,15,16]
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the self-diffusion tensor, which is the Fourier trans-
form of the velocity fluctuation autocorrelation, and
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the motion-encoding gradient. For a gradient pulse of
amplitude g and duration d, separated by displacement
time D and constant diffusion coefficient Dzz , one obtains
the Stejskal-Tanner result a�t� � 4p2q2Dzz�D 2 d�3�,
where q � �2p�21ggd [4,16]. Truncation at second
order is equivalent to a Gaussian velocity fluctuation
that is consistent with the O-U process [17] model of
diffusion in granular shear flows [13]. It applies here
because we obtain the diffusion coefficient from the
long displacement length NMR data in the low-q limit,
where the cumulant expansion is approximately Gaussian
regardless of the form of the complete propagator [16].
The diffusion coefficient in Eq. (1) is that of Eq. (2) in
the long time limit, Dzz�0� � limt!`

�Z2�
2t , where �Z2� is

the displacement variance.
Following Savage and Dai [13], we apply the O-U pro-

cess model for velocity fluctuations to granular flow. From
Eq. (2), the repeated PGSE signal attenuation is [4,16]

a�t� � 4p2q2� 1
2 �u2

z��D2, D �
1
2 �u2

z�D ,

tc . D , (3a)

a�t� � 4p2q2��u2
z�tc� �D 2 d�3�, D � �u2

z�tc ,

tc ø D , (3b)

whereas the compensated PGSE signal would not attenu-
ate, i.e., a�t� � 0, for tc . D but be identical with (3b)
for tc ø D [4]. We call D the effective diffusion coeffi-
cient because the motion is Brownian only when tc ø D.
Otherwise, the collisions are not frequent enough to be
statistically random. In this work, the correlation time tc

is assumed to be the time between particle collisions [12]
that cause velocity changes in the direction of the applied
motion-sensitizing magnetic field gradient.

When tc . D, we have an O-U process with ballistic
motion in the stationary random flow regime [4] during the
time D. When tc ø D, the motion is in the pseudodiffu-
sion limit [17] due to multiple collisions in time D. The
repeated PGSE experiment [Fig. 1(a)] yields an effective
diffusion coefficient D for the O-U process with particles
having all values of tc. In contrast, compensated PGSE
[Fig. 1(b)] refocuses magnetization due to the spins that
remain coherent during D, so the signal attenuation would
be caused only by those particles with tc of the order of
or less than D.

Thus, we are able to study the statistical nature of the
motion in a time window D that is experimentally ad-
justable, i.e., the motion will be deterministic if the corre-
lation time is longer than the window, whereas the motion
will look random if the correlation time is much shorter
than the window. The collisional correlation time, which
is a major microscopic parameter in granular flow studies,
can then be characterized by studying the dynamics as a
function of the duration D.

The system studied was a 70 mm inside diameter,
245 mm long acrylic cylinder half full of 2 mm diameter
oil-filled plastic beads. The rotation rate reported here is
2.36 rad s21 and the flow occurs in a lens-shaped region
near the flat free surface [5]. The rotation carries particles
around as a solid body up to the flowing region where mean
flow occurs nearly parallel to the free surface. Each par-
ticle accelerates and decelerates relatively symmetrically
about the center of the flowing motion before returning
to the solid body region. The average flow is two dimen-
sional with no mean axial velocity within the resolution
of the repeated PGSE experiment of 7.4 3 1023 m s21

and no mean axial acceleration to within 1 m s22 as
measured by compensated PGSE. Only diffusive motion
in a 20 mm thick slice perpendicular to the cylinder
axis near the center of the cylinder will be reported.

Figure 2 shows Stejskal-Tanner plots for axial motion
in two pixels, one in the lower half of the flowing region
[Fig. 2(a)] and the other in the upper half [Fig. 2(b)], both
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FIG. 2. Echo attenuation amplitude (Stejskal-Tanner) plots.
Linear fits to the low-q, long range displacement data provide
the effective diffusion coefficient to generate images as in
Fig. 3. Data are for two voxels near the surface of the flowing
region in the (a) lower and (b) upper half of flow. Observation
time is D � 2.58 ms. Motion sensitivity is in the axial direction
where no net flow is measured. The repeated PGSE data (�) ex-
hibit greater attenuation than the compensated PGSE data (�).

3 mm below the surface. The plots are linear in the low-q
regime, indicating Gaussian behavior, consistent with
exponential velocity fluctuation correlation. The compen-
sated PGSE data (�) show nonzero attenuation indicating
the presence of random motion within the time frame
of D � 2.58 ms, whereas the difference between the
two curves indicates a nonrandom motion superposed
on the random motion. This point is supported by the
biexponential decay in Fig. 2 for the repeated PGSE data,
in which the slope of the higher q data is similar to the
slope of the compensated PGSE [4].

Figures 3(a) and 3(b), respectively, show transverse
slices of effective axial diffusion coefficient measured
with repeated and compensated PGSE experiments for
D � 6.54 ms at a cylinder rotation rate of 2.36 rad s21.
Effective axial diffusivities from repeated PGSE are a fac-
tor of 2 greater than from compensated PGSE, indicating
the presence of coherent motions that are refocused by the
compensated PGSE experiment. The effective diffusion
coefficient from the compensated PGSE is a measure of
the random particle motions on this time scale. It is asym-
metric about the center of the flowing region, being larger
in the lower half of the flow where deceleration occurs, in
contrast to the mean velocity in the flow direction [5,6].
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FIG. 3. NMR images of axial effective diffusion coefficient
for repeated (a) and compensated (b) PGSE at a rotation rate of
2.36 rad s21. Spatial resolution in the transverse �r, u� plane
of the cylinder is 1 mm 3 1 mm with a 20 mm thick axial
slice. Note the factor of 2 difference in the scaling between
(a) and (b). The larger effective diffusion in (a) indicates the
presence of particle motions correlated on time scales longer
than D � 6.54 ms in the axial direction. Correlated motions
that cause spin dephasing for the repeated PGSE experiment
are refocused in the compensated PGSE experiment, yielding a
smaller effective diffusion due only to random motion.

The data in Fig. 3(b) represent the first measurement of
the spatial distribution of motion that is purely random on
a specific time scale in a 3D granular shear flow.

Figure 4 shows the effective axial diffusion coefficient
for D � 6.54 ms, as a function of depth in the granular
material along a line perpendicular to the free surface in
the lower half of the flow. The repeated PGSE (�) and
compensated PGSE (�) effective diffusion data diverge at
depths shallower than h � 27 mm, due to the existence of
axial particle motions correlated on times on the order of
D � 6.54 ms. [Images at D � 2.58 ms to 8.66 ms show
the axial diffusion coefficient still varying with D, indicat-
ing that tc � O�D�.

The effective diffusion coefficient for the repeated PGSE
experiment is a maximum at the free surface �h � 0�, like
the mean velocity parallel to the free surface, shown in the
inset, as measured from the phase of the signal [5]. This
is a reasonable result. There should be no net axial flow
in this system so all motions should be random at long
enough time scale and the repeated PGSE sequence will
yield the effects of random motions at all time scales.

In contrast to the repeated PGSE results, the random mo-
tions peak 	5 mm below the surface. This is an indication
that the correlation time tc becomes longer closer to the
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FIG. 4. Effective axial diffusion coefficient as a function of
depth perpendicular to the free surface in the flowing layer at a
downhill part of the flow for a rotation rate of 2.36 rad s21 and
displacement time D � 6.54 ms. Compensated PGSE data (�)
show a diffusion maximum below the surface while the repeated
PGSE data (�) are maximal at the free surface. The divergence
of the two results at shallower than 27 mm depth means there
are both coherent and random axial motions over the time scale
of 6.54 ms. At greater depths, all motion is random on this time
scale. The inset shows the mean velocity parallel to the free
surface measured along the same perpendicular line.

free surface and an ever larger fraction of them exceed D.
On the other hand, the collisions become more frequent
as the average density increases with increasing depth, but
then decreases when the average flow velocity decreases at
greater depth. At a depth of 213 mm the relative velocity
goes to zero and D goes to a value for molecular diffusion
of oil in the particles.

We have reported PGSE NMR measurements in the in-
terior of 3D granular flows, but only in the axial direction
at two isolated spots in order to show that spatial distribu-
tions of random and nonrandom motions can be separated
in a specific time frame leading to the estimation of the
correlation time tc of O[1 ms] and the velocity fluctuation
intensity �u2� of O�1023 m2 s22� near the free surface. A
complete study of this flow would involve measurements
over a range of D, positions, rotation rates, and anisotropy
of motion. This technique is applicable to other granular
flows, regardless of the kind of interparticle interactions,
provided useful NMR signals exist and the correlation
times are within range of available delay time D. The
upper limit of D is 	200 ms, due to T2 of these par-
ticles, while the lower limit is around a few milliseconds,
at present, because of gradient hardware. An appropriate
choice of material plus hardware improvements could in-
crease this range by an order of magnitude or more.
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