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Equation of State of Solid 3He

Saverio Moroni,1 Francesco Pederiva,2 Stefano Fantoni,3 and Massimo Boninsegni4
1INFM, Università di Roma La Sapienza, Roma, Italy

2Dipartimento di Fisica, Università di Trento, Povo, Trento, Italy
3International School for Advanced Studies, Trieste, Italy

4Department of Physics, San Diego State University, San Diego, California
(Received 21 June 1999)

We present results of diffusion Monte Carlo calculations for the bcc and hcp phases of solid 3He, using
a recent ab initio interatomic potential, including two- and three-body terms. This potential is found to
yield an equation of state for condensed 4He in excellent agreement with experiment, in a wide density
range. For 3He, we find a systematic discrepancy, worth 0.7 K, between our computed equation of state
and a commonly accepted experimental one. We attribute such a discrepancy to an improper choice of
reference energy in the determination of the experimental equation of state.

PACS numbers: 67.80.–s, 05.30.Fk, 64.70.–p
Although solid helium is arguably the simplest realiza-
tion of a quantum crystal, its phase diagram is surprisingly
rich [1,2]. Obtaining a satisfactory theoretical equation
of state (EOS) for this archetypal quantum solid is both
a long standing problem and a worthwhile objective, not
only for its intrinsic interest and its broad relevance to solid
state physics, but also as a cogent test of the most accurate
theoretical many-body techniques and interatomic poten-
tials currently available.

Particularly interesting is the case of 3He. Previous stud-
ies of the EOS of bcc and hcp 3He, mostly based on varia-
tional calculations, have yielded only qualitatively accurate
results [3,4]. Interestingly, theoretical predictions obtained
with similar computational methods are much closer to ex-
periment for the 4He than the 3He crystal (Fig. 1). This
is undoubtedly surprising, considering the relatively small
mass difference and the negligible energy contribution of
quantum statistics in the solid phase. It is not clear to
what extent this state of affairs may be attributed to the
variational wave functions and/or the interatomic poten-
tials utilized in the various studies. Therefore, a reliable
calculation, based on a robust computational method and
accurate interatomic forces, is a necessary step for making
progress in this problem.

In this Letter, we present results of diffusion Monte
Carlo (DMC) calculations for the ground state of solid 3He.
DMC projects the eigenstate with the lowest eigenvalue out
of a trial wave function C. It has been adopted to investi-
gate ground state properties of a variety of quantum fluids
and solids; results for the energy are usually very accu-
rate and largely insensitive to the details of the trial wave
function chosen [7]. We compute by DMC the solid 3He
EOS in both the bcc and hcp structures, at T � 0. We
use an accurate ab initio interatomic potential, featuring
a two-body [8] and a three-body [9] term; in order to as-
sess its reliability, we also compute the EOS of condensed
4He, both in the liquid and in the hcp phases, and compare
with experiments. In all solid simulations described here,
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quantum statistics is neglected; this is the only approxi-
mation, which is quite reasonable and commonly made, as
exchange energies in helium solids are very small (of the
order of a mK) [10].

Our main findings are the following: (a) The potential
utilized, which has no adjustable parameters, yields a 4He
EOS in remarkable agreement with experiment [11,12],
over a wide range of densities, for both the liquid and crys-
talline phases. (b) For solid 3He there is a large discrep-
ancy between our computed EOS and a generally accepted
experimental one [1,13,14]. We argue, however, that such
a discrepancy is merely due to an incorrect reference value
for the energy used to obtain the experimental EOS from
measured quantities [14]. A proper value of the reference
energy brings agreement between theory and experiment
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FIG. 1. Deviations of theoretical estimates of the ground state
energy from the quoted experimental values in solid He close to
the melting point. For 4He: JN, Jastrow-Nosanow results from
Ref. [3]; SWF, shadow wave function results from Ref. [5];
OJTN and OSWF, optimized JN 1 triplet and SWF from
Ref. [6]. For 3He: JN as for 4He; SWF results from Ref. [4];
OJTN, optimized JN1triplet result obtained in this work.
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to the same level as for 4He. We note that such a value
for the reference energy had already been suggested some
time ago [15], but has never been adopted in subsequent
work on this subject.

We model a system of N helium atoms by means of the
following microscopic Hamiltonian:

Ĥ � 2
h̄2
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The two-body interaction y2 used here is the ab initio
SAPT potential recently proposed by Korona et al. [8].
Although there is still some controversy about some of its
fine details [16], the two-body part of the helium poten-
tial is one of the most intensely studied and best known
interactions. A much greater source of uncertainty is the
three-body term. The well-known Bruch-McGee (BM) po-
tential, extensively discussed in the literature [17], features
an attractive term, whose strength A has been typically
adjusted to enforce agreement with experimental informa-
tion, the optimal choice of A being strongly density de-
pendent [18,19]. The three-body term y3 adopted in this
work is an analytical expression given by Cohen and Mur-
rell (CM) [9], which extrapolates from energies computed
fully ab initio for helium trimers in the isosceles geometry.
We assume that the contribution to the energy from further
many-body terms can be neglected. Our DMC simulations,
for both helium isotopes in the various phases, have been
carried out using an optimized trial wave function of the
Jastrow-triplet-Nosanow (OJTN) form
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where R � �r1, . . . , rN � are the coordinates of the N
atoms. The �ai� are the coordinates of a lattice of the
proper symmetry (bcc or hcp) and density. For liquid
simulations, C � 0. The two– and three-body pseu-
dopotentials u�r� and u3�r� have been taken of the form
proposed in Ref. [20], and have been optimized, together
with the parameter C, for each thermodynamic point
considered.

We performed calculations for 3He in the range of mo-
lar volumes between 12 and 25 cc�mol, for the bcc and
the hcp phases of the crystal, and for 4He between 17 and
31 cc�mol, for the hcp crystal and the liquid. The varia-
tional estimate of the ground state energy per atom for solid
3He at the melting point �T � 0�, given by the trial wave
function (2) with the Hamiltonian (1), is shown in Fig. 1.
The DMC calculation performed here is standard (see, for
instance, [7]). In our simulations the energy contribution
e3 due to the three-body potential y3 was computed per-
turbatively, as illustrated in Ref. [21]. This improves con-
siderably the computational efficiency, with no significant
loss of accuracy, at least in the density range considered
here; we explicitly verified this point by repeating a few
calculations at the highest densities using the full Hamil-
tonian (1).

The results presented here pertain to simulations with a
number of atoms equal to N � 128, for the liquid and solid
bcc phase, and N � 180, for the solid hcp phase. Besides
the energy per atom e as a function of the molar volume
y, we have also computed the kinetic energy per atom k,
using the standard DMC extrapolated estimators [7]. This
quantity is of particular interest, as it can be measured by
neutron scattering experiments. Path integral Monte Carlo
calculations for high-pressure helium have shown that k
is mainly sensitive to the repulsive core of the two-body
part of the interatomic potential [19]. The reported values
for the total and kinetic energies have been extrapolated to
zero time step [7].

We now examine our results in detail. In order to as-
sess the accuracy of the interatomic potential utilized, we
compare in Fig. 2 the DMC results for the T � 0 4He
EOS (also listed in Table I) with experiment [11,12]. The
agreement is remarkable, considering the extended density
interval for which it holds, as well as the fact that the po-
tential has no adjustable parameters. The largest deviation
between our theoretically computed and the experimental
curve occurs in the liquid phase, and even there it is quite
small. For example, we find a value of the energy per
atom at the equilibrium density at saturated vapor pressure
�0.02186 Å23� equal to 27.21 K, to be compared to the
experimental 27.17 K [12]. One might argue that a simi-
lar agreement with experiment could already be obtained,
at least for the liquid phase, by using a two-body potential
such as, for example, an earlier version of the well-known
Aziz potential [22] (see, for instance, Ref. 18]).

FIG. 2. DMC energy per 4He atom (circles). Statistical errors
are smaller than the symbol size. Solid lines are spline fits
to experimental data (from Ref. [11] for the hcp region and
Ref. [12] for the liquid region). Solid lines end at the coexistence
zone, whose limits are taken from Ref. [15].
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TABLE I. DMC energy per atom e (in K) for 4He in the liquid
and hcp phases. Also shown is the single-particle kinetic energy
k. Statistical errors (in parentheses) are on the last digits; when
not explicitly indicated, the error is less than 1 on the last digit.
Molar volumes (first column) are in cc�mol.

Liquid hcp
y e k y e k

30.66 27.0866�15� 11.7 20.48 25.7655�59� 25.1
27.55 27.2100�22� 14.0 19.12 24.9881�42� 28.4
25.08 27.0615�36� 16.5 17.98 23.8993�34� 31.4
22.97 26.5769�59� 19.3 17.06 22.558�12� 34.6

We note two points: the first is that the agreement with
experiment obtained in this work extends over a much
wider density range than that afforded by a two-body po-
tential alone, well into the solid phase. Second, the inclu-
sion of a realistic model for the three-body forces improves
upon the predictions offered by the two-body potential, at
all densities considered here. This is in marked contrast
with earlier attempts to improve upon the physical descrip-
tion given by the two-body potential by including phe-
nomenological three-body forces, which typically led to
poorer agreement with experiment [18]. Within the molar
volume range considered in this work, the CM three-body
contribution to the total energy e3 is dominated by the re-
pulsive triple-dipole Axilrod-Teller interaction, with only
a tiny attractive exchange term showing up at the highest
densities.

This is shown in Fig. 3 for the case of hcp 3He, with
similar trends being observed for bcc 3He, as well as for
liquid and hcp 4He. The three-body repulsion compen-
sates the overbinding given by the pair potential alone,
resulting in the final agreement between the experimen-
tal and computed EOS of Fig. 2. For comparison we also
show in Fig. 3 the BM three-body contribution, with the
value of the parameter A given in Ref. [19]. The BM po-
tential has a strongly attractive exchange term, which is
clearly inconsistent with the experimental EOS. The re-
sults obtained for 4He give us confidence in the reliability
of the SAPT-CM interaction for a quantitative description
of the physical properties of helium isotopes. We now turn
to the main focus of our work, namely, the 3He EOS.
The results of the DMC calculations for 3He are given in
Table II and shown in Fig. 4. Although there is a clear im-
provement over previous calculations (since we used a vir-
tually exact algorithm and a more sophisticated potential),
a significant disagreement remains between our results and
the EOS of Ref. [14], generally held as the reference ex-
perimental data.

Because a DMC simulation can occasionally get “stuck”
in a metastable phase, induced by the trial function utilized,
we have also performed a few numerical simulations based
on path integral Monte Carlo (PIMC), an unbiased tech-
nique which does not rely on any a priori input, such as
2652
FIG. 3. Three-body contribution e3 to the ground state energy
of 3He according to three different models of the interaction
potential y3. Dotted line, Axilrod-Teller; solid line, Cohen-
Murrell; dashed line, Bruch-McGee.

C [24]. PIMC results for e�y� are in agreement with the
DMC results, within the statistical uncertainties.

We have therefore undertaken a critical examination of
the EOS of Ref. [14], which was produced by integrating
the experimental constant-T pressure vs volume curve
extrapolated at T � 0, e�y� � e0�y0� 1

Ry

y0
dy0p�y0�.

Here e0�y0� � 20.83 K is the ground state energy at
y0 � 23.5 cc�mol, the melting molar volume of the bcc
phase at T � 1 K. This value for e0�y0� was found by
taking the 3He gas at zero pressure and T � 1 K as a
reference state [14]. A similar procedure, using the liquid
at zero pressure and zero temperature as a reference
state, was carried out in Ref. [15]. The result, which we
reproduced independently, is e0 � 20.13 K, as opposed
to 20.83 K of Ref. [14]. The corresponding EOS of solid
3He, obtained with this different value of e0, is shown by
the dashed line in Fig. 4, and, as can be seen, it agrees
remarkably well with our DMC results in the range of
existence of the bcc crystal.

TABLE II. DMC energy per atom e�y� (in K) for the bcc and
hcp solid phases of 3He. Also shown are the energy contribution
e3 from the three-body potential and the single-particle kinetic
energy k. Statistical errors are as in Table I. Molar volumes
(first column) are in cc�mol.

bcc hcp
y e e3 k e e3 k

24.00 20.3565�58� 0.211 23.6 20.2548�83� 0.214 23.8
23.00 0.1685�51� 0.238 25.3 0.248(10) 0.239 25.4
22.00 0.8015�60� 0.265 27.2 0.8748(44) 0.267 27.4
21.00 1.5922�98� 0.299 29.4 1.653(11) 0.301 29.7
20.00 2.6897�59� 0.340 31.8 2.7217(97) 0.340 32.2
17.00 8.6289�67� 0.520 8.4833(52) 0.520 42.6
15.00 16.6106(96) 0.714 52.8
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FIG. 4. DMC energy per 3He atom, for a hcp (filled sym-
bols) and for a bcc (open symbols) crystal. Statistical errors are
smaller than symbol sizes. Solid (dashed) lines are experimen-
tal EOSs in the Murnaghan form, with parameters taken from
Ref. [13], using different values for the reference energy e0 �y0�.
Crosses are experimental data for the hcp phase, from Ref. [23].
The inset shows an expanded view of the stability region of the
bcc phase.

In Table I and Fig. 4, we also report on the results
obtained for the hcp phase. A double tangent construction
using cubic fits to the DMC energies gives a coexis-
tence phase between yhcp � 19.13 cc�mol and ybcc �
19.23 cc�mol. Since the energies of the bcc and hcp
phases are very close in the range of molar volumes be-
tween 17 and 22 cc�mol, yhcp and ybcc are very sensitive
to any source of bias: For instance, they would change by
�0.3 upon a relative shift of the bcc and hcp energies of
only 1022 K, and by a similar amount upon use of quartic
fits; additional biases could arise from finite size effects,
although the simulated systems are relatively large, as well
as from details of the interaction potential. Therefore, the
comparison between the computed phase transition and
the experimental values [13], yhcp � 19.73 cc�mol and
ybcc � 19.80, should be considered quite satisfactory.

In conclusion, we have presented results of DMC calcu-
lations for 4He and solid 3He using an interaction poten-
tial based on the two-body SAPT potential plus the CM
three-body potential. This entirely ab initio interparticle
interaction provides an EOS for 4He in very good agree-
ment with available experimental data.

The computed EOS for solid 3He is also in remark-
able agreement with the experimental EOS, provided that
the ground state energy per atom at y � 23.50 cc�mol
be taken to be 20.13 K. This value (not a fitting pa-
rameter) is obtained by direct integration of the measured
constant-T pressure vs volume curve, taking as a reference
state the liquid at equilibrium density and zero temperature
[15]. It should supersede the value 20.83 K [14] that has
been commonly used to derive the experimental EOS for
solid 3He.
Finally, we find that the bcc-hcp phase transition in the
3He crystal is well described quantitatively by the interpar-
ticle interaction employed in this calculation. In our view,
as more and more accurate pair potentials become avail-
able, correspondingly accurate three-body terms should be
included in the interaction potential for accurate calcula-
tions of low-temperature properties of helium.
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