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Dispersion Properties of a Dusty Plasma Containing Nonspherical Rotating Dust Grains
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The dispersion relation for a dusty plasma containing elongated and rotating charged dust grains is
obtained by assuming that the dipole moments of the dust particulates are nonzero. The longitudinal
waves with frequency close to the angular rotation frequency of the dust grains are found to be unstable.
The results should be relevant to enhanced fluctuations in astrophysical environments.
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It is well known that the dust grains in astrophysical
as well as in terrestrial plasmas do not have a spherical
form; the grains are typically elongated or flattened [1,2].
The grains also acquire a rotational motion due to their
interaction with photons and particles of the surrounding
gas. The angular frequency of such rotation can reach
a rather large value �104 106 sec21 for thermal dust
grains and �109 sec21 for suprathermal ones [1], and
there is a different kind of orientation involving preferred
direction (relative to the galactic disk) of the dust grain
angular momentum vector.

During the last eight years, a large number of papers
[3–6] have been written dealing with the dispersion prop-
erties of a dusty plasma. In all of these papers, dust grains
were, however, assumed to be point charges or have a
spherical shape. Consequently, the previous investigations
of dusty plasma waves and instabilities have not studied
the influence of dust grain elongation.

The nonspherical charged dust grains would have, in
general, a nonzero dipole moment. Hence, the dusty
plasma with elongated and rotating dust grains would
acquire a new characteristic frequency, which equals the
angular rotation frequency of the dust grains. In this
Letter, it is shown that the dispersion properties of such
a dusty plasma can be drastically modified. Specifically,
the electrostatic waves with frequencies close to the
dust rotational frequency are found to be unstable. In
order to demonstrate this, a kinetic equation for charged,
rotating dust grains is constructed, by assuming that
the dust particles have a nonzero dipole moment. The
dispersion relation for a dusty plasma is then derived, by
supposing that elongated dust grains rotate with some
preferred angular frequency. In conclusion, an indirect
way is suggested for detecting the dust grain rotation by
scattering of the radiation off the exited fluctuations in a
dusty plasma.

Let us suppose that dust grains are elongated, and ne-
glect the spin around the axis of the elongation. The an-
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gular moments of rotating dust grains are assumed to be
directed along some direction, say along the z axis. The
dust grain system can then be described by the one-particle
distribution function fd�R, v , V, w, t� [7], which enumer-
ates the particulates according to the coordinate R and the
velocity v of the center of mass, and the angular frequency
V. The azimuthal angle w determines the direction of the
dust grain elongation axis.

The charge density r�r, t� associated with the dust
grains is defined in terms of the grains distribution
function. We have

r�r, t� �
Z

dR dGr̂�r 2 R, w�fd�R, v , V, w, t� , (1)

where dG � dvdVdw. The integrand r̂�r 2 R, w� de-
scribes the charge distribution on a single grain. It depends
on the shape of the grain and the azimuthal orientation of
the grain’s elongation axis. Outside of the grain’s volume,
we have r̂ � 0.

For point particulates, we have r̂�r 2 R, f� � qd�r 2

R�, where q is the total charge of the dust grain and d�x�
is the Dirac-delta function, and the relation (1) gives the
well-known expression for the charge density. The dust
grains are identical. Then, we can partly determine the
dependence of r̂ on the azimuthal angle w. Every given
direction of the grain elongation axis, determined by the
angle w, can be considered as a final position of the turning
of the axis (and simultaneously of the whole grain) from
the direction with w � 0. This allows us to write

r̂�r 2 R, w� � r̂���Ā�w� �r 2 R�, 0��� � r̂���Ā�r 2 R���� ,

(2)

where Ā�w� is the tensor of turning by the angle w, viz.

Ā�w� �

µ
cos�w� sin�w�

2sin�w� cos�w�

∂
. (3)

Furthermore, we assume that the dust grain size is smaller
than the scale length of the plasma inhomogeneity,
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viz. a ø l. Substituting (2) into (1) and expanding the
distribution function fd around the point r, we obtain

r�r, t� � q
Z

dGfd�r, v , V, w, t�

2
Z

dG�d ? =�fd�r, v , V, w, t� , (4)

where

q �
Z

drr̂�r� (5)

and

d � Ā21�w�
Z

dr rr̂�r� (6)

are the total charge and the dipole moment of the dust
grain, respectively. Furthermore, Ā21�w� is the inverse of
the tensor Ā�w�. Quite analogous calculations lead to the
following expression for the dust current density

J�r, t� � q
Z

dGvfd�r, v , V, w, t�

2
Z

dGv�d ? =�fd�r, v , V, w, t�

1
Z

dG�V 3 d�fd�r, v , V, w, t� , (7)

where V � �0, 0, V�. The first two terms on the right-
hand side of (7) describe the transfer of the charge (4), and
the third term describes the current arising from the dust
grain rotation. Below we shall show that the expressions
(4) and (7) are connected with the continuity equation,
as it should be. The motion of the charged dust grain
in the electromagnetic fields [E � 2=f 2 �1�c�≠tA and
B � =A] is described by the Hamiltonian
H �
1

2md

Ω
P 2

q
c

A 1
1
c

�d 3 B�
æ2

1
P2

f

2I
1 qf 2 �d ? E� , (8)

where md is the mass of the dust grain, P the generalized momentum, Pf � IV the angular momentum, I the moment of
inertia of the elongated grain, c the speed of light, and f and A are the scalar and vector potentials of the electromagnetic
fields, respectively. By means of the Hamiltonian (8), the kinetic equation for the dust grain distribution function can be
written as

≠fd

≠t
1 v ?

≠fd

≠r
1

1
md

Ω
�q 1 �d ? =��

µ
E 1

1
c

�v 3 B�
∂

1
1
c

��V 3 d� 3 B�
æ

?
≠fd

≠v
1 V

≠fd

≠w
1

∑
d 3

µ
E 1

1
c

�v 3 B�
∂∏

z

≠fd

≠pf

� 0 . (9)
From (9) it can be easily shown that the dust grain density
and the current, defined by (4) and (7), satisfy the conti-
nuity equation. Equation (9) and the kinetic equations for
the electrons and the ions, namely,

≠fa

≠t
1 v ?

≠fa

≠r
1

ea

ma

Ω
E 1

1
c

�v 3 B�
æ

?
≠fa

≠v
� 0 ,

(10)

supplemented by the Maxwell equations, allow us to de-
duce the dispersion properties of the dusty plasma contain-
ing rotating charged dust grains. Here, a equals e for the
electrons and i for the ions.

To determine the dielectric permittivity, we must intro-
duce a small perturbation on the equilibrium distribution
functions fd0 (for the dust particles) and fa0 (for the elec-
trons and the ions). Such deviations occur due to small
fluctuations of the electric and magnetic fields E�r, t� and
B�r, t�, which in turn are produced by the perturbation of
the equilibrium. We write the perturbed distribution func-
tions as

fd � fd0 1 dfd (11)

and

fa0 � fa0 1 dfa , (12)
and suppose that dfd ø fd0 and dfa ø fa0. As-
suming that the perturbed quantities are proportional
to exp�2ivt 1 ik ? r�, where v and k are the wave
frequency and the wave vector, we linearize (10) and
obtain

dfa � 2i
ea

ma

�v 2 k ? v�21E ?
≠fa0

≠v
. (13)

In the following, we consider the case where the dust
grain size is smaller than the wavelength of the perturba-
tion, viz. ka ø 1, and that the phase velocity of the wave
exceeds the thermal velocity of the dust particles. Accord-
ingly, (9) can be simplified, and after linearization we ob-
tain

dfd � 2i
q

md
�v 2 k ? v�21E ?

≠fd0

≠p

1
d
2

≠fd0

≠pw

Ω
Ex 2 iEy

v 2 k ? v 2 V
eiw

2
Ex 1 iEy

v 2 k ? v 1 V
e2iw

æ
, (14)

where we have introduced the following relations for the
components of the dust grain’s dipole moment:
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dx � d cos�w�, dy � d sin�w� . (15)

In the unperturbed state, we choose the Maxwellian dis-
tribution functions for the electrons and the ions with the
temperature Ta and the number density na0. On the other
hand, for the unperturbed distribution function of the ro-
tating dust grains, we can use [8]

fd0 � nd0�2pmdTd�23�2�2pITd�21�2

3 exp

Ω
2

p2

2mdTd
2

�pw 2 pw0�2

2ITd

æ
, (16)

where nd0 and Td are the unperturbed number density
and the temperature of the dust grains, respectively.
We assumed the dust grains to rotate with the preferred
angular frequency V0, so that pw0 � IV0. The un-
perturbed quasineutral dusty plasma does not have
equilibrium charge and current densities. However,
the charge and current densities are induced due to the
perturbed electromagnetic fields. Expressing the induced
current density through the perturbations of the distribu-
tion functions (13) and (14), we can find the dielectric
tensor for the dusty plasma following the standard method
[9]. The result is

eij�v, k� �
kikj

k2 el�v, k� 1

Ω
dij 2

kikj

k2

æ
et�v, k�

1

Ω
dij 2

ViVj

V2

æ
ed�v, k� , (17)

where el�v, k� and et�v, k� are the usual longitudinal and
transverse dielectric permittivities, respectively. They are
given by

el�v, k� � 1 1
X
b

v
2
pb

k2V 2
Tb

Ω
1 2 I1

µ
v

kVTb

∂æ
(18)

and

et�v, k� � 1 2
X
b

v
2
pb

v2 I1

µ
v

kVTb

∂
, (19)

where b � e, i, d, vpb , and VTb are the plasma fre-
quency and the thermal velocity of the particle specie b.
The function I1�x� is [9]

I1�x� �
x

p
2p

Z `

2`

dz exp�2z2�2�
x 2 z

. (20)

The asymptotic forms of (20) are

I1�x� � 1 1
1
x2 1 ... 2 i

q
p�2 x exp�2x2�2�

for jxj ¿ 1, jRexj ¿ jImxj, Imx , 0, and

I1�x� � 2i
q

p�2 x (21)

for jxj ø 1. The influence of the dust grain rotation is
described by ed�v, k�, which equals
2628
ed�v, k� � 2
V2

r

v2

k2

k̄2

v

v 2 V0
I1

µ
v 2 V0

k̄VTd

∂

1
V2

r

k̄2V 2
Td

µ
k2

k̄2 1
k2

k̄2

V0

v

∂

3

Ω
1 2 I1

µ
v 2 V0

k̄VTd

∂æ
, (22)

where Vr � �4pd2nd0�2I�1�2, k2 � md�I , and k̄ �
�k2 1 k2�1�2 � k.

Let us now consider the frequency regimes

kVTd ø v ø VTi , kVTe

v 2 V0 ¿ k̄VTd . (23)

The participation of the charged dust gas is decisive only
in the wave motion when the frequency and wave vector
satisfy the relation (23). Without loss of generality, we
may assume that the vector k lies in the �x, z� plane, i.e.,
k � �k�, 0, kz�. Then, from the general dispersion relationÇ

k2dij 2 kikj 2
v2

c2 eij�v, k�
Ç

� 0 , (24)

and according to (17) to (22) we find (a) for the transversal
waves, which are polarized along the y axis so that E �
�0, E, 0�, the following dispersion relation:

k2c2

v2 � 1 2
v

2
pd

v2 2
V2

r

�v 2 V0�2 . (25)

For V0 � 0 the influence of the dust grain rotation disap-
pears. However, for waves with frequencies close to V0
(vpd � Vr), we obtain

v � V0

Ω
1 6 i

Vr

�k2c2 1 v
2
pd�1�2

æ
. (26)

Equation (26) reveals that the ordinary transversal waves
become unstable. Let us note that in the plasma without the
dust grains the low-frequency transverse oscillations decay
aperiodically due to their collisionless absorption by the
electrons [9]. (b) For the longitudinal waves (v2 ø k2c2),
the modified dispersion relation for the dust-acoustic wave
[3,4], which is deduced from (17), reads

1 1
1

k2r2
D

2
v

2
pd

v2 2
k2

�

k2

V2
r

�v 2 V0�2 � 0 , (27)

where

1�r2
D �

X
a�e,i

v2
pa�V 2

Ta . (28)

Equation (27) is formally similar to that dispersion rela-
tion which has been discussed in Ref. [10] in connection
with the two-stream instability. From (27) it follows that
the dust grain rotation gives the contribution only for waves
with k� fi 0. For V0 � 0 that contribution is expressed
in the change of the dust-acoustic frequency
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v �

∑
v2

pd 1
k2

�

k2 V2
r

∏1�2∑
1 1

1

k2r2
D

∏21�2

. (29)

However, in the presence of the dust grain rotation, (27)
admits complex solutions for any rotation frequency V0,
satisfying the condition

V0 , vpd

∑
1 1

1

k2r2
D

∏21�2∑
1 1

µ
k2

�

k2

V2
r

v
2
pd

∂1�3∏3�2

.

(30)

The equality of V0 on the right-hand side of (30) defines
the boundary of the stability of the dust-acoustic wave.
Letting v � V0 1 ig, where g ø V0, we obtain from
(27) the growth rate for v

2
pd�V

2
0 � 1 1 1�k2r2

D ,

g � 31�2224�3

∑
k2

�

k2

V2
r

v
2
pd

∏1�3

V0 . (31)

In summary, we have presented the dispersion relation
for a dusty plasma containing elongated and rotating dust
grains. The energy of the dust rotation can flow into
plasma oscillations, driving them at nonthermal levels. The
instability of longitudinal waves occurs only in the case
when the wave vector lies in the plane of the dust grain
rotation. In this case, there exists a coupling between the
longitudinal electric field and charges that are placed on
the dust grain surfaces and that rotate together with the
dust grains. It is well known that the cross section of the
scattering of transverse electromagnetic waves in a plasma
has sharp maxima near the natural plasma low frequencies
[9,11]. Since the thermal motion of the dust particles [see
(23)] is typically neglected, the scattering would occur on
the electrons and the ions only, and the form of the scat-
tering line will be determined by their contribution to the
spectral distribution of fluctuations. Therefore, for the de-
pendence of the cross section on the frequency, we have

ds � d�Reel�v, k��
dv

v
. (32)

For the case considered above [see, Eq. (31)] the cross
section (32) has the sharp maximum at v � V0. When
the dust grain rotation frequency V0 approaches a critical
value, defined by the right-hand side of (31), the fluctua-
tions of longitudinal waves sharply increase and the scat-
tering cross section must also sharply increase. Thus, the
existence of a preferred frequency of the dust grain rota-
tion can be found by means of the scattering of transverse
electromagnetic waves off enhanced dust-acoustic fluctua-
tions in a dusty plasma.
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