
VOLUME 84, NUMBER 12 P H Y S I C A L R E V I E W L E T T E R S 20 MARCH 2000

2610
Phase Order in Chaotic Maps and in Coupled Map Lattices
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By defining a direction phase as the direction of two sequential iterations of the logistic map, a
transition of a net direction phase M from zero to a finite value as the parameter m increases is found.
Near the transition point m0 a scaling M � �m 2 m0�a with a � 0.5 is obtained. The order state of
the direction phases in a coupled map lattice is also studied. A phase synchronization of the direction
phases is found although the lattices still remain chaotic.
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Generally, in a dynamical system, a chaotic state means
that the system follows a chaotic trajectory and shows
randomlike features. For example, in its chaotic state,
the logistic map shows randomlike values during itera-
tions. However, for the bifurcation parameter 3.0 , m ,

3.6786, these values are settled into two main bands un-
til they are merged together at m0 � 3.6786 [1–3]. The
values of sequential iterations always periodically hop be-
tween these two bands even when the map is situated in its
chaotic states. Such a periodicity actually implies a type
of symmetry (two-band symmetry). A “direction phase”
of the iterations, if we define it as the direction of two se-
quential iterations (or the trajectory), has a specific choice
or an ordered arrangement, i.e., each up phase always fol-
lowed by a down phase (see Fig. 1). That is, the net direc-
tion phase is zero, which is just like the spins arranged in
an antiferromagnetism [4]. Obviously, the symmetry will
be broken when m $ m0 where the two bands are merged
into one large band. Our question is whether the symmetry
breaking (the bands merging) in the chaotic map results in
a state of nonzero net direction phase or a transition from
an ordered arrangement of the direction phases to a disor-
dered one. Is such an ordered or disordered arrangement of
direction phases relevant to any mechanism in the pattern
formation [5] or phase synchronization [6] in the dynami-
cal systems?

In this paper, we study the questions mentioned above.
For a logistic map, we find a transition of the direction
phase from an ordered arrangement to a disordered one
occurring at m0. For such a disordered arrangement there
exists a net up direction M of the trajectory, which shows
a scaling M � �m 2 m0�a with a � 0.5 near m0. This
scaling and exponent a relate to the intrinsic feature of the
quadratic maximum of the map. For a coupled map lattice,
we find that there exists a spatial order of such direction
phases which show a synchronized oscillation with the
iterations of the lattices when the coupling is strong. This
direction-phase ordering is argued relevant to the pattern
formation and phase synchronization in the chaotic system.

Let us consider the logistic map Xn11 � mXn�1 2 Xn�,
where m [ �1, 4� and 0 , Xn , 1. As m increases from
1 to 4, the map experiences a period doubling to chaos
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[1–3]. At m � 3.18, the map presents chaos, and at
m0 the two branches of chaotic bands merge together.
Clearly, the map is symmetric about two branches, i.e., a
two-band symmetry, when m , m0 [see Fig. 2(a)]. The
values of iterations Xn always follow a “up” direction
and then a “down” one, which contributes no net “up”
or “down” phase [see Figs. 2(a) and 1(a)], just like the
spins arranged in an antiferromagnetism. Here the net di-
rection phase, similar to the magnetization [4], is defined
as M�m� � T21

PT
n�1 S�n� over a large number of itera-

tions T . Here S�n� � 1 for Xn11 2 Xn . 1 and S�n� �
21 for Xn11 2 Xn , 1 are defined as the up phase S"

and down phase S#, respectively. The zero net direction
phase, i.e., M � 0, extends to m � m0, where two chaotic
bands are merged together. For m . m0, there is a net
up phase with M fi 0, i.e., a preferential state with up
phase [see Figs. 1(b) and 2(b)]. However, the arrange-
ment of the up and down direction phases is disordered.
It is noted that there are some flat plateaus with constant
M relating to the periodic windows in the bifurcation di-
agram [see Fig. 2(b)]. In addition, there is also a scaling
M � �m 2 m0�a with a � 0.5 near the transition m0 [see
Fig. 2(c)].

Such a disordered state of finite net direction phases re-
sults clearly from the symmetry breaking of the two-band
structure. Let us define the preimage of the unstable fixed
point, Xc, and the unstable fixed point itself, Xf . Then
the whole interval �Xc, Xf� is mapped onto �Xf , Xmax�,

1   1 -1   1  1  -1 1  1  -1  1 -1  1 -1  1  -1  1  1  -1

(b)

-1  1  -1  1 -1  1  -1  1 -1  1 -1  1  -1  1 -1  1  -1  1

(a)

FIG. 1. The direction phase and its similarity to the spin and
the binary representations. (a) For m � 3.65, the net up phase
is zero; (b) for m � 3.90, the net up phase is not zero.
© 2000 The American Physical Society
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FIG. 2. The bifurcation diagram and the net direction phase
M versus m for the logistic map. (a) The bifurcation diagram.
(b) M vs m; The inset shows the case of the marked region in
(a). (c) The scaling of M with m near the transition m0 (open
circles) and m

0
0 (open triangles).

such that S�n� � 1 for all points in �Xc, Xf �, whereas
the interval �Xf , Xmax� is mapped to �Xmin, Xf�, such that
S�n� � 21 for all of these points. As m increases from
below m0 to above m0, the left end point of the support
of the measure Xmin is shifted from the right of Xc to
the left of Xc [7]. The nonzero (or zero) M depends on
whether the invariant measure has (or has no) contribution
on the left of Xc. Thus, for m # m0, we have Xmin $ Xc

and M � 0. Clearly, increasing m leads to a linear in-
crease of the interval of the support of the measure in
the left of Xc, i.e., �Xc 2 Xmin� ~ �m 2 m0�, and all of
the points in �Xmin, Xc� lead to two successive S�n� � 1
and S�n 1 1� � 1 before the next single S�n 1 2� � 21
follows. Therefore, we have M �

PT
n�1 S�n� being pro-

portional to the measure of the interval �Xmin, Xc�, i.e.,
M � �m 2 m0�a with a � 1�2 since the square root sin-
gularities of invariant measure map at the edge [3,8]. As
a result, the scaling near m0 is an intrinsic feature of the
logistic map itself. In addition, it is known that at m0
there is a collision between the unstable period-1 orbit and
the chaotic attractor, which leads to the so-called crisis [9].
Since the birth of the crisis often induces complex dynami-
cal behavior [9], presumably, the net direction phase could
be one measure of such complex behavior.

Interestingly, the net direction phase also appears in each
chaotic band as long as there exists a merging of two sub-
chaotic bands. From the marked region in Fig. 2(a), we
can see such a transition [the inset in Fig. 2(b)]. The scal-
ing M � �m 2 m

0
0�a is the same as that near m0, and the

same exponent a � 0.5 is also obtained [see Fig. 2(c)].
Because of the self-similarity of the bifurcation diagram
shown in Fig. 2(a), we may find the direction-phase tran-
sition existing in various levels. That is, in the whole bi-
furcation range there are many transitions at each local
two-band symmetry breaking. For example, in the marked
region, there is a net up phase, while its symmetric coun-
terpart has a net down phase. As a matter of fact, the
hierarchical characteristic mentioned above relates to the
definition of the direction phase. The direction phase de-
fined in Fig. 1 is Ns � 2NB21 � 1 with Ns being the in-
terval of the steps of the iterations and NB the number
of the bands after the merging. Near m0, the number
of the bands after merging is one, NB � 1; the direction
phase is defined as Xn1Ns 2 Xn � Xn11 2 Xn. Simi-
larly, for the region marked in Fig. 2(a), the number of
bands after merging is two, i.e., NB � 2; then the direction
phase is given by Xn1Ns 2 Xn � Xn12 2 Xn. In addition,
for the period-3 bands (for m [ �3.83, 3.86�), we have
Ns � 3 3 2NB21 with NB � 1. In general, we have Ns �
q 3 2NB21 with q � 1, 3, 5, . . ., and NB � 1, 2, 4, . . . , for
different periods and different bands. Hence, we may con-
clude that, as long as there exists a symmetry breaking of
a two-band structure in a chaotic map, there will always
be a direction-phase transition.

Now, let us turn to the study of the collective behavior
of the direction phases of a coupled map lattice. The moti-
vation for such a study is as follows: Because of the simi-
larity of the direction phase to the spin, every individual
map in the lattices is always in a certain direction, either
up or down at each time. Thus, in the presence of cou-
pling, there may exist some correlation between the direc-
tion phases of maps, which will present nontrial-collective
dynamical and statistical behaviors just like the spins in a
two-dimensional Ising model. There may be some clus-
ters (or domains) of maps with the same direction phases,
implying a relation to the pattern formation [10]. In addi-
tion, since the direction phase has similar features to the
phases defined in a number of studies [6,11], we expect
that our system also exhibits an interesting phenomenon,
the phase synchronization. The phase synchronization in
such a mapping dynamical system shows a transition from
an in-phase state to an antiphase one.

We consider a two-dimensional coupled map lattice,
Xn11�i, j� � f���Xn�i, j���� 1 e� f���Xn�i 1 1, j���� 1 f���Xn�i 2 1, j���� 1 f���Xn�i, j 1 1����
1 f���Xn�i, j 2 1���� 2 4f���Xn�i, j������4 , (1)
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FIG. 3. The net direction phase M versus m for a lattice
[Eq. (1)] with different couplings e. The inset shows the on-
set of the transition mc versus e.

where e is the coupling strength and f�x� � mx�1 2 x�.
That is, the lattices include L 3 L �L � 100� logistic
maps. A periodic boundary condition is used. The in-
teraction is taken as the diffusive interaction [12].

In Fig. 3, we show the net direction phase of the
lattice M versus the parameter m for different coupling
strengths. Here M is defined as a spatiotemporal average
2612
M � �T21 3 L22�
PT

n�1

P
i,j S�i,j��n�, where S�i,j��n�

is the direction phase of the �i, j�th map with the same
definition as that for the single logistic map. From Fig. 3,
we can see that, in the weak coupling range e , 0.12,
there always exists a sharp transition of M at a certain
value of m for each coupling. However, the magnitude of
M decreases as the coupling e increases. Because of the
coupling, there are no periodic windows of the direction
phase as found in the case of the single map. Besides,
the critical value of m for the transition increases as the
coupling increases (see inset in Fig. 3). All these clearly
indicate that the net direction phase M characterizes the
statistical behavior of the lattices. As long as the coupling
is weak, the lattices basically show statistical behavior
similar to that of the single map, and the symmetry break-
ing shifts to a large value of m as the coupling increases.
In addition, the hierarchical feature of the transition points
(in Fig. 2) disappears since the detailed bifurcations are
destroyed by the mean-field effect of the coupling.

When e . 0.15, there is no net direction phase, i.e.,
M � 0, for the lattices (see Fig. 3). However, due to the
strong coupling, the lattices show synchronous direction
phases, or all (or most) of the individual maps in the system
have the same phases, up or down. In Fig. 4, we show
FIG. 4. The snapshots of the direction phases of Eq. (1) �m � 3.7� with couplings: (a) e � 0; (b) e � 0.3; (c) e � 0.6. (d) The
values of Xn�i, j� at the same time n as for (c). Different shades of gray represent different ranges of values of Xn�i, j�.



VOLUME 84, NUMBER 12 P H Y S I C A L R E V I E W L E T T E R S 20 MARCH 2000
3.65 3.70 3.75 3.80 3.85 3.90 3.95 4.00
0.0

0.2

0.4

0.6

0.8

1.0

1051

10 51

 ε=0.2

 ε=0.4

 
 θ

-1.0

-0.5

0.0

0.5

1.0
 M

(n
)  (a)

 n

 

 

-1.0

-0.5

0.0

0.5

1.0

 M
(n

)

(b)

 n

 

 

0.4 0.5 0.6 0.7 0.8 0.9 1.0
3.8

3.9
(c)

 µ
θ

 ε

 

 

-6.5 -6.0 -5.5 -5.0 -4.5 -4.0
-4

-3

-2

-1

0

(d)

 ln
( θ

- θ
0)

 ln(µθ-µ)

 

 

µ

FIG. 5. Q versus m for two couplings e � 0.2, 0.4. Inset:
(a),(b) the net direction phase M�n� changes with the time n for
two m values; (c) the onset value of mu versus e; (d) the scaling
of �Q 2 Q0� � �m 2 mu�b with Q0 � 0.056.

the snapshots of the direction phases and the values of
Xn�i, j� for the lattices. We can see that as the coupling e

increases the direction phases become synchronized from
their initial randomness. There are many clusters which
have the same direction phase or a phase-locked state. The
sizes of the clusters increase as the coupling e increases,
and at e � 0.6 all maps have the same direction phase
[see Fig. 4(c)]. Note that, although all of the maps are
synchronized in their phases or are phase-locked together,
the values of the maps Xn�i, j� are still chaotic and have a
very weak correlation between each other [see Fig. 4(d)].

In order to characterize the phase synchronization or
the phase-locked state between the maps, let us define an
in-phase ratio Q � T21

PT
n�1 jM�n�j as a measure of the

synchronization, where M�n� � L22
P

i,j S�i,j��n� is the
net direction phase of the lattices at time n. Clearly, Q de-
scribes the synchronization. When Q � 1, all maps have
the same direction phase, i.e., an in-phase synchroniza-
tion while, when Q � 0, half-maps have the same direc-
tion phases. Figure 5 shows two examples of Q versus
m. We can see that, for a strong coupling e � 0.4. there
is a strong in-phase synchronization with Q � 1 when
m , 3.82. All maps have a up phase at time n and then
have a down phase at time n 1 1 [see inset (a) and also
Fig. 4(c)]. The lattices show a synchronous oscillation in
their direction phases. However, there is a transition near
m � 3.82 from a strong in-phase synchronization to an
antiphase one. In the antiphase state there are many clus-
ters, and some clusters have an up phase and some have a
down phase. Thus the net direction phase M�n� � 0 or the
in-phase ratio Q � 0 [see the inset (b)]. Physically, this
is because the strong coupling has an effect which forces
the nearest neighboring maps to be in phase, while the
maps with a large value of m behave as random phases.
The insets (c) and (d) in Fig. 5 show the transition point
mQ versus the coupling e and the scaling behavior near the
transition Q � �m 2 mQ�b with b � 1.96 6 0.03. Nev-
ertheless, there is no such transition for a weak coupling
with e , 0.3. The cluster sizes are small, and there is also
some randomness in their direction phases for each cluster.

In conclusion, a transition of the direction phases from
an ordered state to a disordered one for a logistic map is
studied. The direction phases in a coupled map lattice are
found to behave as a synchronous oscillation or a cluster
ordering feature, which is relevant to the pattern formation
of the dynamical system. However, the transition is not
a phase transition since the increase of the value of M
appears in a situation where the order is reduced, i.e., a
regular arrangement of the up and down direction phases
becomes irregular. Finally, it is noted that the translation
of the real-valued trajectory into the direction phases is
a symbolic encoding. That is, by the definition of S�n�, a
binary partition with elements S�n� � 1 or 21 in the phase
space is defined, and the trajectory is encoded according
to which partition element a point is in. Such a symbolic
encoding may be applicable for the dynamical systems and
can be discussed using the information theory [13].
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