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Quantum Localization of the Kicked Rydberg Atom
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We investigate the quantum localization of the one-dimensional Rydberg atom subject to a unidirec-
tional periodic train of impulses. For high frequencies of the train the classical system becomes chaotic
and leads to fast ionization. By contrast, the quantum system is found to be remarkably stable. We find
this quantum localization to be directly related to the existence of “scars” of the unstable periodic orbits
of the system. The localization length is given by the energy excursion along the periodic orbits.

PACS numbers: 32.80.Rm, 03.65.Sq, 05.45.Mt, 42.50.Hz
Even though the correspondence between classical and
quantum mechanics has been extensively investigated for
nearly a century, many issues have remained unresolved.
Renewed interest in this subject has recently been stimu-
lated by the experimental realization of simple driven
systems that are at the borderline between classical and
quantum mechanics. Prototypes of such systems are
cooled atoms subject to modulated standing waves [1],
Rydberg atoms subject to microwave pulses [2], and
Rydberg atoms subject to trains of half-cycle pulses [3,4].

One important motivation for revisiting the issue of
classical-quantum correspondence has been the increased
appreciation of the apparent contradiction between the
ubiquitousness of classical chaotic dynamics and the lack
thereof in quantum dynamics. This suggests that, even
in the limit of large quantum numbers, the correspon-
dence between classical and quantum dynamics cannot
hold for arbitrary periods of time. One of the most inter-
esting discoveries along these lines has been the quantum
localization or quantum suppression of classically chaotic
diffusion. Quantum localization was first predicted for the
kicked rotor [5]. It was shown that quantum localization
can be mapped onto the well-known Anderson localization
in solid state physics [6,7]. Subsequently, it was found
for Rydberg atoms in microwave fields [8,9] and could
be observed as an enhanced quantum stabilization of the
atom against ionization. Recently, quantum localization
for these systems has been confirmed experimentally [1,2].

In this Letter we investigate the quantum localization
in the “kicked Rydberg atom.” Experimental realization of
this driven system has only recently been achieved by ex-
posing Rydberg atoms with ni � 400 to trains of many
equispaced half-cycle pulses [3,4]. This system can display
both “hard” (global) and “soft” (coexisting with regular
dynamics) chaos, depending on the direction, the strength,
and the frequency of the train of kicks [3,4,10]. For pulse
repetition frequencies nT close to the classical orbital fre-
quency (i.e., n

21
T � Torb � 2pn3

i , where ni is the initial
energy level and atomic units are used throughout), both
classical and quantum calculations exhibit enhanced sta-
bility in good agreement with experiment which is a sig-
0031-9007�00�84(12)�2602(4)$15.00
nature of broad stable islands in phase space [11]. For high
frequencies (nTTorb ¿ 1), however, a drastically different
picture emerges: the classical system is fully chaotic over
a wide range of kick strengths and directions resulting in
rapid ionization. Here we show that the quantum system
exhibits strong suppression of classical chaotic ionization.
Quantum localization is found to exhibit novel features dif-
ferent from previously studied systems. The strong impul-
sive coupling leads to localization in the continuum and
to deviation from exponential localization. These features
can be directly traced to scars of unstable periodic orbits.

Converged quantum calculations in three dimensions
(3D) for the long-time evolution of systems with strong
coupling to the continuum remain a challenge. We there-
fore focus here on a simplified one-dimensional (1D) sys-
tem for which convergence can be achieved. The latter is
crucial for the determination of long-time stability and lo-
calization. The 1D system is described by the Hamiltonian

H�t� � Hat 1 V �t� , (1)

Hat �
p2

2
2

1
q

, V �t� � 2qDp
K21X
k�0

d�t 2 kT � ,

(2)

where q . 0 and p are the position and momentum of the
electron, respectively, and Hat is the unperturbed atomic
Hamiltonian. The train of d-shaped kicks is character-
ized by the total number of kicks K , the kick strength Dp,
and the time period between kicks T (i.e., the train fre-
quency nT � 1�T ). The classical phase-space structure
of this simplified model was found to closely mimic that
of the 3D system for initial conditions representing elon-
gated (Stark) orbits [4]. This similarity is partly due to
the fact that the kicked atom features a global chaotic sea
for arbitrarily small Dp (Fig. 1). The Poincaré surface of
section for this time-dependent system corresponds to stro-
boscopic snapshots of the scaled �q0, p0� � �q�n2

i , pni�
coordinates just before each kick (Fig. 1). No matter how
small the value of Dp is, the classical phase space under-
goes a discontinuous transition as the perturbation is turned
on. For the “positively” kicked atom, Dp . 0, the system
© 2000 The American Physical Society
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FIG. 1. Poincaré maps of the kicked atom (dots) together with
the unperturbed torus associated with the initial state (dashed
line) in scaled units, q0 � q�n2

i and p0 � nip. The frequency
of the train of pulses is n0 � 16.8.

immediately displays hard chaos: all tori are suddenly de-
stroyed [Fig. 1(b)] [10]. For the “negatively” kicked atom,
Dp , 0, the system suffers a transition to soft chaos with
a mixed phase space. Residual tori are not globally con-
fining and an interconnected chaotic sea permits diffusion
to the continuum [Fig. 1(a)].

The strong coupling between bound states and the con-
tinuum distinguishes the kicked atom from other systems.
The Fourier expansion of the interaction

V �t� � 2
qDp

T
2

2qDp
T

X̀
m�1

cos�2pnmt� (3)

contains all harmonics (nm � mnT � with equal strength
leading to multiphoton coupling to the continuum. Un-
like laser or microwave fields, the average field, Fav �
2Dp�T , is nonzero. Therefore, the Hamiltonian contains
both static (dc) and dynamic (ac) electric fields,

H�t� � HStark 1 V 0�t� � Hat 1 qFav 1 V 0�t� ,

V 0�t� � 2qFav

X̀
m�1

cos�2pnmt� .
(4)

For Dp , 0 �Fav . 0�, the quantum spectrum of HStark
is discrete. For Dp . 0 (Fav , 0), the spectrum is en-
tirely continuous and involves a finite number of reso-
nances whose energy levels are below or near the top of
the potential barrier Ebarrier � 22

p
Dp�T . Equivalently,

the effect of the perturbation [Eq. (2)] corresponds to a se-
quence of energy transfers

DEk � �Hat�k11 2 �Hat�k � �p�kDp 1
Dp2

2
, (5)

showing that the momentum transfer, in addition to the
frequency, determines the effective energy transfer.
The strong coupling to the continuum complicates the
quantum description since any realistic calculation must
include a large number of continuum states. Quantum cal-
culations are performed by expanding the wave function of
the electron, jc�t��, in a large basis set of Sturmian pseu-
dostates (up to Nmax � 1500) spanning a finite Hilbert
space P. Probability flow out of P into its orthogonal
complement Q is accounted for by employing the repeti-
tive projection method [12]. Spurious contributions due to
“reflections” can be suppressed and backcoupling from Q
to P is neglected. This feature has the benefit that, if the
calculation has not fully converged, the calculated survival
probability and the quantum localization is underestimated.

Figure 2 illustrates the occurrence of quantum localiza-
tion for a Rydberg atom initially in the ni � 50 level
subject to a train of impulses with a scaled frequency
n0 � nT �norb � 2pn3

i �T � 16.8. Previous calculations
at lower frequencies and very small kick strengths in-
dicated that quantum localization could be found [13].
The classical initial conditions in each case correspond
to the unperturbed torus shown in Fig. 1 which lies in
a chaotic region far from sizable stable islands. After a
short period of time, the classical survival probability to
be in any bound state for Dp0 � 20.3 [Fig. 2(a)] rapidly
decays as a function of the number of kicks. Remarkably,
the quantum survival probability separates from the
classical result after �30 kicks. The quantum system be-
comes vastly more stable than the classical system, thereby
providing clear evidence of quantum localization. For
short times, where the classical evolution mimics the quan-
tum evolution, the survival probability oscillates with a
period �9T which provides clues as to the underlying
localization mechanism. For Dp . 0, the survival
probability also shows quantum suppression of diffusive
ionization but it does not display pronounced oscil-
lations. Instead, the quantum recurrence probability,
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FIG. 2. Survival probability (a) and recurrence probability
(b) as a function of the number of kicks for a Rydberg atom
initially in the ni � 50 level and for n0 � 16.8.
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Prec�t� � j�c�0� jc�t��j2, defined by the probability to
return to the initial ni � 50 level exhibits an oscillatory
structure [Fig. 2(b)] which is partially mimicked by the
classical result.

Signatures of quantum localization are also evident in
energy space (Fig. 3). The energy distribution of the
evolved quantum state after 600 kicks,

jc�t � 600T �� �
NmaxX
n�1

cn�t � 600T � jfStark
n � (6)

displays for both Dp0 � 20.3 [Fig. 3(a)] and Dp0 � 0.01
[Fig. 3(b)] pronounced inhibition of diffusion. In Eq. (6)
we have employed a basis of Stark states diagonalizing
HStark [Eq. (4)]. Choosing a Stark basis has the effect
of sharpening the observed structures. Two distinct
localization mechanisms suppressing energy diffusion
can be identified for weak pulses [Fig. 3(b)]: a rapid
decay around the central peak and a decaying amplitude
of additional peaks. The latter represents quasiresonant
excitation into Stark states jm� which are separated from
the initial state, j0�, by a multiple of the driving frequency,
Em 2 E0 � 2mpnT � mv. Suppression of resonant
diffusion was analyzed by Jensen et al. [9] for a monochro-
matic microwave field in terms of sequential photoabsorp-
tions with probabilities Pv

m!m11. This mechanism predicts
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FIG. 3. Stark energy distribution of the final state of the atom
after application of 600 kicks with scaled frequency n0 � 16.8
and different strengths. Initially, the atom is prepared in the
Stark state j0� which has the largest overlap with the ni � 50
hydrogenic level. The crosses are the time-averaged integrated
probabilities of the resonant peaks. The solid lines with circles
are the average excitation probabilities given by Pmv

0!m such that
the adjacent energy difference between circles is equal to v.
The dashed lines are the dipole coupling strength j�0jqjfStark

n �j2
in arbitrary units.
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exponential localization, P0!m ~ exp�2mj lnPv
0!1j�. In

the kicked atom, the excitation dynamics is fundamentally
different due to the equally strong presence of all harmon-
ics. Averaged over the detuning dEm, direct excitation
induced by a single harmonic with frequency mv is given
by

Pmv
0!m �

jFav �mjqj0�j
dEm

tan21

∑
dEm

2jFav �mjqj0�j

∏
, (7)

where �mjqj0� is the dipole coupling from j0� to jm�.
In the present problem, direct excitation dominates over
sequential excitation, Pmv

0!m .
Qm21

i�0 Pv
i!i11. Conse-

quently, we observe a nonexponential localization in
energy space which mimics the energy dependence of
the dipole coupling, also displayed in Fig. 3. In fact, the
integrated peaks agree quite well with the direct excitation
probabilities Pmv

0!m [Eq. (7)].
For localization to occur, a second localization mecha-

nism must be operative that suppresses nonresonant dif-
fusion, which determines the width of each m-photon
peak (including m � 0). The width of the dominant peak
in Fig. 3(b) agrees with the localization length obtained
from the state entropy [14]. By contrast, for Dp0 � 20.3
[Fig. 3(a)] the two mechanisms are of comparable strength
and a distinction between resonant and nonresonant dif-
fusion is possible only when the evolution of the wave
function is analyzed in more detail. We analyze the quan-
tum evolution by expanding the wave function in terms
of Floquet states [15] obtained by numerically diagonali-
zing the period-one evolution operator within the finite
Hilbert �P� space. The Floquet quasieigenenergies are
complex due to the nonunitary evolution. Components of
the wave function that correspond to localized, nondiffu-
sive flow are characterized by vanishing imaginary parts of
the quasienergies of the dominant Floquet states. In order
to relate the localization to the classical phase space we
calculate the Husimi distribution of these localized Flo-
quet states [11,16]. Remarkably, for both Dp0 � 0.01 and
Dp0 � 20.3 the Husimi distributions are localized around
unstable fixed points (Fig. 4). The Husimi distribution de-
picted in Fig. 4(a) is localized at the classical fixed points
of a period-9T unstable orbit. Clearly, the Husimi dis-
tribution represents a “scar” of the classical unstable pe-
riodic orbit [17]. Initially, the electron is near the outer
turning point of the orbit at p0 � 0, q0 � 2 and acquires
a negative momentum. Each kick on the inbound motion
speeds up the electron and excites it to a higher energy
level including the hydrogenic continuum. Eventually, the
electron scatters at the nucleus and acquires a positive mo-
mentum. Subsequently, each kick during the outbound
part of the trajectory slows down the electron deexciting
it to a lower energy level and becoming a bound hydro-
genic state once again. Note that three out of nine fixed
points lie at positive energies �Hat . 0� which corresponds
to localization in the continuum. The motion along a
classical unstable periodic orbit immediately explains the
oscillation period (�9T � in the survival probability and the
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FIG. 4. Contour plot of the Husimi distribution of a quite
stable Floquet state for n0 � 16.8 (thin solid lines), the classi-
cal unstable fixed points (crosses) with period 9T (a) and period
17T and 19T (b). The period 9T unstable periodic orbit (thick
solid line), and the ionization threshold, Hat � 0, (thick dashed
line) are also depicted. The black squares at the lower left corner
correspond to an area of minimum scaled quantum uncertainty
h̄0 � 1�ni � 0.02. The parameters for the train of pulses are
the same as in Fig. 1.

classical-quantum correspondence for short times. The
classical phase-space flow proceeds along the unstable or-
bit for times comparable to the inverse Lyapunov exponent
l21 before it exponentially separates from it at later times.
The quantum evolution, on the other hand, localizes along
the unstable fixed points.

Similarly, the scarring of the Husimi distribution for
Dp0 � 0.01 [Fig. 4(b)] is at the root of the oscillations
in the recurrence probability with a period �18T . In this
case, however, the fixed points are distributed very densely
in phase space (fixed points with a period 17T and 19T
are plotted in the figure), and quantum mechanics cannot
resolve all structures. In scaled units, the uncertainty is
given by Dp0Dq0 � 1�ni and its size by the rectangular
area at the lower left corner in Fig. 4. Clearly, more than
one fixed point can fit into this area. The absence of oscil-
lations in the survival probability, unlike the recurrence, is
also a direct consequence of the fact that unstable periodic
orbits exist exclusively among bound states �Hat , 0� for
the positively kicked atom. Once the electron has reached
the continuum (Hat . 0) as it moves away from the nu-
cleus, any additional kicks accelerate the electron further
on its outbound journey.

The close connection between the Husimi distributions
and the unstable periodic orbits suggests that the quan-
tum localization may be described in terms of the
classical dynamics. To this end we consider the total
energy excursion along an unstable periodic orbit, DE �
Emax 2 Emin, where and Emax and Emin are the maximum
and minimum Stark energies involved in the periodic
orbit. We find DE provides a measure of the localiza-
tion length. For Dp0 � 0.01, DE 	 6.8 3 1026 a.u.,
which is smaller than the nearest-neighbor Stark level spac-
ing and is in good agreement with the width of the domi-
nant peak in Fig. 3(b). On the other hand, for
Dp0 � 20.3, DE $ v is larger than the single-photon
spacing. This immediately explains why well-defined
multiphoton peaks are absent and the two localization
mechanisms merge. Also in this case, DE provides
an estimate of the width of the energy distribution in
Fig. 3(b). Our analysis shows that this relationship holds
over a wide parameter range.

In summary, we have demonstrated the existence of
quantum localization of the kicked Rydberg atom within
a fully chaotic region in phase space and we have shown
that it is intimately related to its localization around
classical unstable periodic orbits. The localization is not
exponential in energy space due to the fact that the high
harmonics of the perturbation play a significant role in the
excitation dynamics. In order to realize this simplified 1D
system experimentally, a quasi-one-dimensional parabolic
Rydberg state �n � 400� has to be prepared as an initial
state polarized parallel to the direction of half-cycle pulses.
We hope that the present results will stimulate efforts for
the experimental realization of quantum localization in
the kicked Rydberg atom.
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