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Chaotic Transport and Current Reversal in Deterministic Ratchets
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We address the problem of the classical deterministic dynamics of a particle in a periodic asymmetric
potential of the ratchet type. We take into account the inertial term in order to understand the role of
the chaotic dynamics in the transport properties. By a comparison between the bifurcation diagram and
the current, we identify the origin of the current reversal as a bifurcation from a chaotic to a periodic
regime. Close to this bifurcation, we observed trajectories revealing intermittent chaos and anomalous
deterministic diffusion.

PACS numbers: 05.45.Ac, 05.40.Fb, 05.45.Pq, 05.60.Cd
In recent years there has been an increasing interest in
the study of the transport properties of nonlinear systems
that can extract usable work from unbiased nonequilib-
rium fluctuations. These so-called ratchet systems can be
modeled, for instance, by considering a Brownian particle
in a periodic asymmetric potential and acted upon by an
external time-dependent force of zero average [1,2]. This
recent burst of work is motivated in part by the challenge
to explain the unidirectional transport of molecular motors
in the biological realm [3]. Another source of motivation
arises from the potential for new methods of separation
or segregation of particles [4], and more recently in
the recognition of the “ratchet effect” in the quantum
domain [5]. The latter research includes a quantum ratchet
based on an asymmetric (triangular) quantum dot [6], an
asymmetric antidot array [7], the ratchet effect in surface
electromigration [8], a ratchet potential for fluxons in
Josephson-junctions arrays [9], a ratchet effect in cold
atoms using an asymmetric optical lattice [10], and the
reducing of vortex density in superconductors using the
ratchet effect [11].

In order to understand the generation of unidirectional
motion from nonequilibrium fluctuations, several models
have been used. In Ref. [1], there is a classification of dif-
ferent types of ratchet systems; among them we can men-
tion the “rocking ratchets,” in which the particles move in
an asymmetric periodic potential subject to spatially uni-
form, time-periodic deterministic forces of zero average.
Most of the models, so far, deal with the overdamped case
in which the inertial term due to the finite mass of the par-
ticle is neglected. However, in recent studies, this oversim-
plification was overcome by treating properly the effect of
finite mass [5,12,13].

In particular, in a recent paper [12], Jung, Kissner, and
Hänggi study the effect of finite inertia in a deterministi-
cally rocked, periodic ratchet potential. They consider the
deterministic case in which noise is absent [14]. The iner-
tial term allows the possibility of having both regular and
chaotic dynamics, and this deterministically induced chaos
can mimic the role of noise. They showed that the system
can exhibit a current flow in either direction, presenting
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multiple current reversals as the amplitude of the external
force is varied.

In this paper, the problem of transport in periodic asym-
metric potentials of the ratchet type is address. We elabo-
rate on the model analyzed by Jung et al. [12], in which
they find multiple current reversals in the dynamics. In
fact, the study of the current-reversal phenomena has given
rise to a research activity on its own [1].

The goal of this paper is to reveal the origin of the
current reversal, by analyzing in detail the dynamics for
values of the parameters just before and after the critical
values at which the current reversal takes place.

Let us consider the one-dimensional problem of a par-
ticle driven by a periodic time-dependent external force,
under the influence of an asymmetric periodic potential of
the ratchet type. The time average of the external force is
zero. Here, we do not take into account any kind of noise,
and thus the dynamics is deterministic. The equation of
motion is given by

mẍ 1 g �x 1
dV �x�

dx
� F0 cos�vDt� , (1)

where m is the mass of the particle, g is the friction coef-
ficient, V �x� is the external asymmetric periodic potential,
F0 is the amplitude of the external force, and vD is the
frequency of the external driving force. The ratchet poten-
tial is given by

V �x� � V1 2 V0 sin
2p�x 2 x0�

L
2

V0

4
sin

4p�x 2 x0�
L

,

(2)

where L is the periodicity of the potential, V0 is the am-
plitude, and V1 is an arbitrary constant. The potential is
shifted by an amount x0 in order that the minimum of the
potential is located at the origin.

Let us define the following dimensionless units:
x0 � x�L, x0

0 � x0�L, t0 � v0t, w � vD�v0, b �
g�mv0, and a � F0�mLv

2
0 . Here, the frequency v0

is given by v
2
0 � 4p2V0d�mL2 and d is defined by

d � sin�2pjx0
0j� 1 sin�4pjx0

0j�.
The frequency v0 is the frequency of the linear motion

around the minima of the potential; thus we are scaling
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the time with the natural period of motion t0 � 2p�v0.
The dimensionless equation of motion, after renaming the
variables again without the primes, becomes

ẍ 1 b �x 1
dV �x�

dx
� a cos�wt� , (3)

where the dimensionless potential [15] is given by V �x� �
C 2 �sin2p�x 2 x0� 1 0.25 sin4p�x 2 x0���4p2d and
is depicted in Fig. 1.

In the equation of motion, Eq. (3), there are three di-
mensionless parameters: a, b, and w, defined above in
terms of physical quantities. We vary the parameter a and
fix b � 0.1 and w � 0.67 throughout this paper.

The extended phase space in which the dynamics is tak-
ing place is three dimensional, since we are dealing with
an inhomogeneous differential equation with an explicit
time dependence. This equation can be written as a three-
dimensional dynamical system that we solve numerically,
using the fourth-order Runge-Kutta algorithm. The equa-
tion of motion Eq. (3) is nonlinear and thus allows the
possibility of chaotic orbits. If the inertial term associated
with the second derivative ẍ were absent, then the dynami-
cal system could not be chaotic.

The main motivation behind this work is to study in
detail the origin of the current reversal in a chaotically
deterministic rocked ratchet. In order to do so, we have
to study first the current J itself, which we define as
the time average of the average velocity over an en-
semble of initial conditions. Therefore, the current
involves two different averages: the first average is over
M initial conditions, which we take equally distributed
in space, centered around the origin, and with an initial
velocity equal to zero. For a fixed time, say tj , we obtain
an average velocity that we denoted as yj , and is given
by yj �

1
M

PM
i�1 �xi�tj�. The second average is a time

average; since we take a discrete time for the numerical
solution of the equation of motion, we have a discrete
finite set of N different times tj , and then the current can
be defined as J �

1
N

PN
j�1 yj . This quantity is a single

number for a fixed set of parameters a, b, w, but it varies
with the parameter a, fixing b and w.

0

0.01

0.02

0.03

0.04

0.05

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

V
(x

)

x

Ratchet Potential

FIG. 1. The dimensionless ratchet periodic potential V �x�.
Besides the continuum orbits in the extended phase
space, we can obtain the Poincaré section, using as a
stroboscopic time the period of oscillation of the external
force. With the aid of Poincaré sections we can distinguish
between periodic and chaotic orbits, and we can obtain a
bifurcation diagram as a function of the parameter a.

The bifurcation diagram for b � 0.1 and w � 0.67 is
shown in Fig. 2a in a limited range of the parameter
a. We can observe a period-doubling route to chaos,
and after a chaotic region, there is a bifurcation taking
place at a critical value ac � 0.080 928 44. It is precisely
at this bifurcation point that the current reversal occurs.
After this bifurcation, a periodic window emerges, with
an orbit of period four. In Fig. 2b, we show the current
as a function of the parameter a, in exactly the same
range as the bifurcation diagram above. We notice the
abrupt transition at the bifurcation point that leads to the
first current reversal. In Figs. 2a and 2b we are analyzing
only a short range of values of a, where the first current
reversal takes place. If we vary a further, we can obtain
multiple current reversals [12].

In order to understand in more detail the nature of the
current reversal, let us look at the orbits just before and af-
ter the transition. The reversal occurs at the critical value
ac � 0.080 928 44. If a is below this critical value ac,
say a � 0.074, then the orbit is periodic, with period two.
For this case we depict, in Fig. 3a, the position of the par-
ticle as a function of time. We notice a period-two or-
bit, as can be distinguished in the bifurcation diagram for
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FIG. 2. For b � 0.1 and w � 0.67 we show the following:
(a) The bifurcation diagram as a function of a, and (b) the
current J as a function of a. The range in the parameter a
corresponds to the first current reversal.
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FIG. 3. For b � 0.1 and w � 0.67 we show the following:
(a) The trajectory of the particle for a � 0.074 (positive current),
and (b) the trajectory for a � 0.081 (negative current).

a � 0.074. In Fig. 3b we show again the position as a
function of time for a � 0.081, which is just above the
critical value ac. In this case, we observe a period-four
orbit that corresponds to the periodic window in the bi-
furcation diagram in Fig. 2a. This orbit is such that the
particle is “climbing” in the negative direction, that is, in
the direction in which the slope of the potential is higher.
We notice that there is a qualitative difference between the
periodic orbit that transports particles to the positive direc-
tion and the periodic orbit that transports particles to the
negative direction: in the latter case, the particle requires
twice the time than in the former case, to advance one well
in the ratchet potential. A closer look at the trajectory in
Fig. 3b reveals the “trick” that the particle uses to navigate
in the negative direction: in order to advance one step to
the left, it moves first one step to the right and then two
steps to the left. The net result is a negative current.

In Fig. 4, we show a typical trajectory for a just be-
low ac. The trajectory is chaotic and the corresponding
chaotic attractor is depicted in Fig. 5. In this case, the par-
ticle starts at the origin with no velocity; it jumps from one
well in the ratchet potential to another well to the right or
to the left in a chaotic way. The particle gets trapped os-
cillating for a while in a minimum (sticking mode), as is
indicated by the integer values of x in the ordinate, and
suddenly starts a running mode with average constant ve-
locity in the negative direction. In terms of the velocity,
these running modes, as the one depicted in Fig. 3b, cor-
respond to periodic motion. The phenomenology can be
described as follows. For values of a above ac, as in
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FIG. 4. The intermittent chaotic trajectory of the particle for
b � 0.1, w � 0.67, and a � 0.080 928 44.

Fig. 3b, the attractor is a periodic orbit. For a slightly
less than ac there are long stretches of time (running or
laminar modes) during which the orbit appears to be peri-
odic and closely resembles the orbit for a . ac, but this
regular (approximately periodic) behavior is intermittently
interrupted by finite duration “bursts” in which the orbit
behaves in a chaotic manner. The net result in the velocity
is a set of periodic stretches of time interrupted by a burst
of chaotic motion, signaling precisely the phenomenon of
intermittency [16]. As a approaches ac from below, the
duration of the running modes in the negative direction in-
creases, until the duration diverges at a � ac, where the
trajectory becomes truly periodic.

To complete this picture, in Fig. 5, we show two
attractors: (1) the chaotic attractor for a � 0.080 92,
just below ac, corresponding to the trajectory in Fig. 4,
and (2) the period-four attractor for a � 0.080 93,
corresponding to the trajectory in Fig. 3b. This periodic
attractor consists of four points in phase space, which
are located at the center of the open circles. We obtain
these attractors confining the dynamics in x between
20.5 and 0.5. As a approaches ac from below, the
dynamics in the attractor becomes intermittent, spending

FIG. 5. For b � 0.1 and w � 0.67 we show two attractors: a
chaotic attractor for a � 0.080 92, just below ac, and a period-
four attractor consisting of four points located at the center of
the open circles.
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most of the time in the vicinity of the period-four
attractor, and suddenly “jumping” in a chaotic way for
some time, and then returning close to the period-four
attractor again, and so on. In terms of the velocity, the
result is an intermittent time series as discussed above.

In order to characterize the deterministic diffusion in
this regime, we calculate the mean square displacement
�x2� as a function of time. We obtain numerically that
�x2� 	 ta , where the exponent a � 3�2. This is a signa-
ture of anomalous deterministic diffusion, in which �x2�
grows faster than linear, that is, a . 1 (superdiffusion).
Normal deterministic diffusion corresponds to a � 1.
In contrast, the trajectories in Figs. 3a and 3b transport
particles in a ballistic way, with a � 2. The relation-
ship between anomalous deterministic diffusion and
intermittent chaos has been explored recently, together
with the connection with Lévy flights [17]. The character
of the trajectories, as the one in Fig. 4, remains to be
analyzed more carefully in order to determine if they
correspond to Lévy flights.

In summary, we have identified the mechanism by
which the current reversal in deterministic ratchets
arises: it corresponds to a bifurcation from a chaotic
to a periodic regime. Near this bifurcation, the chaotic
trajectories exhibit intermittent dynamics and the transport
arises through deterministic anomalous diffusion with
an exponent greater than one (superdiffusion). As the
control parameter a approaches the critical value ac at
the bifurcation from below, the duration of the running
modes in the negative direction increases. Finally, the
duration diverges at the critical value, leading to a truly
periodic orbit in the negative direction. This is precisely
the mechanism by which the current reversal takes place.
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