Comment on "Singularities and Pseudogaps in the Density of States of Peierls Chains"

In a recent Letter [1] Bartosch and Kopietz (BK) presented what were claimed to be exact results for the zeroenergy density of states of a particular model of electrons moving in a correlated random potential. In this Comment we show that BK have not calculated the density of states at all; rather they have determined some properties of the zero-energy wave function of the model they consider. The object of interest to BK is $\varrho(x, \omega) = \frac{1}{\pi} \text{Im}G(x, x; \omega)$ where *G* is the Green function of a one-electron problem in one spatial dimension. Their exact result concerns this quantity evaluated at the particular frequency ($\omega = 0$). One may see that $\rho(x, \omega = 0)$ is related to a wave function by writing the general expression for ϱ in terms of the exact eigenstates $\varphi_n(x)$ and energies E_n of the problem:

$$\rho(x,\omega) = \sum_{n} |\phi_n(x)|^2 \delta(\omega - E_n).$$
 (1)

In a finite system of length l and definite boundary conditions (e.g., periodic) there is a discrete set of energy levels and from Eq. (1) we see $Q(x, \omega)$ is a series of δ functions in ω . At each allowed energy it has spatial dependence determined by the eigenfunctions at that energy. BK consider an infinite translation-invariant system, in which a disordered region of size L is embedded. In this case, eigenvalues exist at all ω but for fixed $\omega Q(x, \omega)$ still gives the square of the amplitude of the wave function of energy ω . Evaluation of $\rho(x, \omega)$ at one frequency (as done by BK) provides no information about the density of states; this information requires discussion of the variation of ρ over a range of ω .

We now solve the specific problem considered by BK. This is specified by the equation

$$[\partial_x - \Delta(x)\sigma_2]\psi(x) = i\omega\sigma_3\psi(x)$$
(2)

with $\psi(x)$ a two-component spinor representing right and left moving components of the electron wave function, $\sigma_{2,3}$ the usual Pauli matrices, and $\Delta(x)$ a real random function different from 0 on the interval $0 \le x \le L$. BK considered the case in which the region $0 \le x \le L$ is embedded in an infinite translation-invariant medium. For convenience we assume instead that it is embedded in a ring of radius R + L with $R \gg L$. The boundary condition is $\psi(0) = \psi(L + R)$. For ω very near 0 and $0 \le x \le L$ we may neglect the ω on the right-hand side of Eq. (2); the resulting equation may be integrated, yielding $[A(x) = \int_0^x dy \Delta(y)]$

$$\psi(x) = e^{A(x)\sigma_2}\psi(0). \tag{3}$$

On the interval $L \le x \le R + L$, $\Delta(x) = 0$ and the equation may again be solved. We define C = A(L) and write

$$\psi(R + L) = e^{i\omega\sigma_3 R} e^{C\sigma_2} \psi(0).$$
(4)

0031-9007/00/84(11)/2546(1)\$15.00

The periodic boundary condition may now be implemented; it implies the matrix $e^{i\omega\sigma_3 R}e^{C\sigma_2}$ has unit eigenvalue; the wave function is then the corresponding eigenvector. Allowed solutions correspond to $\cos\omega R = \frac{1}{\cosh C}$; for $R \gg L$, there exist allowed $\omega \sim \pi/2R$ small enough that the ω term can be neglected in the range 0 < x < L justifying the approximation used to construct Eq. (3). If ω is chosen to satisfy the eigenvalue condition then

$$\psi(x) = \frac{1}{\sqrt{2}} e^{A(x)\sigma_2} \left[\frac{1}{\frac{1+i\sinh C}{i\cosh C}} \right].$$
 (5)

Squaring Eq. (5) and performing some algebra leads to

$$|\psi(x)|^2 = \frac{\cosh[A(x) - B(x)]}{\cosh C} \tag{6}$$

with B(x) = C - A(x). This is precisely Eq. (17) of BK, which they asserted represented the local density of states. Their subsequent results, which involve averages of this quantity over distributions of $\Delta(x)$, are therefore seen to pertain to wave function statistics rather than to the density of states. For example, the disorder average of $|\psi(x)|^2$ yields $\ln \rho_{BK}(x, \omega = 0) \sim x(L - x)$; the exponential variation of ρ_{BK} with x and its divergence with system size are not physically sensible for a density of states but are expected for wave functions in disordered systems.

The physically relevant density of states is obtained by averaging Eq. (1) over a range of energies large compared to L^{-1} but small compared to intrinsic scales. We have determined this behavior at all frequencies, using a mixture of analytical and numerical techniques, for $\Delta(x)$ a Gaussian random variable with spatial correlation length ξ . At sufficiently low energy one may use the techniques outlined above to map Eq. (2) onto the fluctuating (delta-correlated) gap model solved by Ovchinnikov and Erikhman [2]; the result, confirmed by numerics, is a density of states that diverges as $1/\omega$ with logarithmic corrections for all ξ . The critical value of ξ proposed in Eq. (23) of BK is found not to exist. A complete report of our results will be published elsewhere.

A.J. Millis

Department of Physics and Astronomy Rutgers University Piscataway, New Jersey 08854

H. Monien

Physikalisches Institut Universität Bonn 53115 Bonn, Germany

Received 24 May 1999 PACS numbers: 71.23.-k, 02.50.Ey, 71.10.Pm

- [1] L. Bartosch and P. Kopietz, Phys. Rev. Lett. 82, 988 (1999).
- [2] A. A. Ovchinnikov and N. S. Erikhman, Zh. Eksp. Teor. Fiz. 73, 650 (1977) [Sov. Phys. JETP 46, 340 (1977)].

© 2000 The American Physical Society

2546