
VOLUME 84, NUMBER 11 P H Y S I C A L R E V I E W L E T T E R S 13 MARCH 2000
Comment on “Singularities and Pseudogaps
in the Density of States of Peierls Chains”

In a recent Letter [1] Bartosch and Kopietz (BK) pre-
sented what were claimed to be exact results for the zero-
energy density of states of a particular model of electrons
moving in a correlated random potential. In this Com-
ment we show that BK have not calculated the density of
states at all; rather they have determined some properties of
the zero-energy wave function of the model they consider.
The object of interest to BK is � �x, v� � 1

p ImG�x, x; v�
where G is the Green function of a one-electron prob-
lem in one spatial dimension. Their exact result concerns
this quantity evaluated at the particular frequency �v � 0�.
One may see that r�x, v � 0� is related to a wave func-
tion by writing the general expression for � in terms of the
exact eigenstates wn�x� and energies En of the problem:

r�x, v� �
X
n
jfn�x�j2d�v 2 En� . (1)

In a finite system of length l and definite boundary con-
ditions (e.g., periodic) there is a discrete set of energy
levels and from Eq. (1) we see ��x, v� is a series of d

functions in v. At each allowed energy it has spatial
dependence determined by the eigenfunctions at that en-
ergy. BK consider an infinite translation-invariant system,
in which a disordered region of size L is embedded. In this
case, eigenvalues exist at all v but for fixed v � �x, v� still
gives the square of the amplitude of the wave function of
energy v. Evaluation of r�x, v� at one frequency (as done
by BK) provides no information about the density of states;
this information requires discussion of the variation of r

over a range of v.
We now solve the specific problem considered by BK.

This is specified by the equation

�≠x 2 D�x�s2�c�x� � ivs3c�x� (2)

with c�x� a two-component spinor representing right and
left moving components of the electron wave function, s2,3
the usual Pauli matrices, and D�x� a real random func-
tion different from 0 on the interval 0 # x # L. BK
considered the case in which the region 0 # x # L is
embedded in an infinite translation-invariant medium. For
convenience we assume instead that it is embedded in a
ring of radius R 1 L with R ¿ L. The boundary con-
dition is c�0� � c�L 1 R�. For v very near 0 and 0 #

x # L we may neglect the v on the right-hand side of
Eq. (2); the resulting equation may be integrated, yielding
�A�x� �

Rx
0 dyD� y��

c�x� � eA�x�s2c�0� . (3)

On the interval L # x # R 1 L, D�x� � 0 and the equa-
tion may again be solved. We define C � A�L� and write

c�R 1 L� � eivs3ReCs2c�0� . (4)
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The periodic boundary condition may now be im-
plemented; it implies the matrix eivs3ReCs2 has unit
eigenvalue; the wave function is then the corresponding
eigenvector. Allowed solutions correspond to cosvR �

1
coshC ; for R ¿ L, there exist allowed v � p�2R small
enough that the v term can be neglected in the range
0 , x , L justifying the approximation used to construct
Eq. (3). If v is chosen to satisfy the eigenvalue condi-
tion then

c�x� �
1
p

2
eA�x�s2

"
1

17i sinhC
i coshC

#
. (5)

Squaring Eq. (5) and performing some algebra leads to

jc�x�j2 �
cosh�A�x� 2 B�x��

coshC
(6)

with B�x� � C 2 A�x�. This is precisely Eq. (17) of BK,
which they asserted represented the local density of states.
Their subsequent results, which involve averages of this
quantity over distributions of D�x�, are therefore seen to
pertain to wave function statistics rather than to the density
of states. For example, the disorder average of jc�x�j2
yields lnrBK�x, v � 0� � x�L 2 x�; the exponential
variation of rBK with x and its divergence with system
size are not physically sensible for a density of states but
are expected for wave functions in disordered systems.

The physically relevant density of states is obtained by
averaging Eq. (1) over a range of energies large compared
to L21 but small compared to intrinsic scales. We have de-
termined this behavior at all frequencies, using a mixture of
analytical and numerical techniques, for D�x� a Gaussian
random variable with spatial correlation length j. At suf-
ficiently low energy one may use the techniques outlined
above to map Eq. (2) onto the fluctuating (delta-correlated)
gap model solved by Ovchinnikov and Erikhman [2]; the
result, confirmed by numerics, is a density of states that di-
verges as 1�v with logarithmic corrections for all j. The
critical value of j proposed in Eq. (23) of BK is found not
to exist. A complete report of our results will be published
elsewhere.
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