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Highly optimized tolerance (HOT) is a mechanism that relates evolving structure to power laws in
interconnected systems. HOT systems arise where design and evolution create complex systems sharing
common features, including (1) high efficiency, performance, and robustness to designed-for uncertain-
ties, (2) hypersensitivity to design flaws and unanticipated perturbations, (3) nongeneric, specialized,
structured configurations, and (4) power laws. We study the impact of incorporating increasing levels of
design and find that even small amounts of design lead to HOT states in percolation.

PACS numbers: 05.65.+b, 05.45.—a, 64.60.Ak, 87.23.Kg

Recently we introduced a mechanism for power lawsin
complex systems, which we refer to as highly optimized
tolerance (HOT) [1]. The name isintended to reflect sys-
tems designed for high performance in an uncertain envi-
ronment and operated at densities well above a standard
critical point. In this Letter, we focus particular attention
on properties associated with varying the level of design.
This is roughly analogous to varying the rate of mutation
in biological organisms or varying the extent to which al-
ternative prototypes are tested prior to implementation of
an incremental change in man made systems. We present
our results in the context of percolation. We find that even
algorithms which are restricted to local explorations of a
small fraction of the state space can lead to dramatic de-
partures from a conventional critical phenomenon.

Through design and evolution, HOT systems achieve
rare structured states which are robust to perturbations they
were designed to handle, yet fragile to unexpected pertur-
bations and design flaws. As the sophistication of these
systemsisincreased, engineers encounter a series of trade-
offs between greater productivity or throughput and the
possibility of catastrophic failure. Such robustness trade-
offs are central properties of the complex systems which
arise in biology and engineering. They aso distinguish
HOT states from the generic ensembles typically studied
in statistical physics in the context of the “edge of chaos”
(EOC) [2] and self-organized criticality (SOC) [3].

To illustrate HOT, we construct the simplest possible
example. We begin with two-dimensional site percolation
[4] onan N X N sguare lattice. We focus on spatial fea
tures, ignoring most aspects of the dynamics. We study
the development of a designed configuration (see Fig. 1)
aswe incrementally increase the density by occupying sites
one at atime. We make a loose analogy with forest fires,
where occupied sites correspond to trees, and risk is asso-
ciated with fires. A key quantity isthe yield Y, defined to
be the average density of trees left unburned in a configu-
ration after a single spark hits. If a spark hits an unoccu-
pied site, nothing burns. When the spark hits an occupied
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site the fire burns every site in the connected cluster ¢ of
nearest-neighbor occupied sites, where ¢ is the number of
sites lost relative to the system size. At each density we
calculate Y for an ensemble of configurations, subject to a
probability distribution P(i, j) of sparks. We also obtain a
distribution of the loss in individual fires f(c) [the cumu-
lative distribution of events of size greater than or equal
tocisF(c)],suchthat Y = p — (f), where (f) is com-
puted with respect to both the ensemble of configurations
and the distribution P(i, j). We increment the density by
adding one occupied site to the previous configuration in
its original state before a spark lands. Different levels of
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FIG. 1. Sample configurations at peak yield for N = 64 and
varying values of the design parameter D, (@) the random case
D=1,(b)D =2,(c) D =N, and (d) D = N2. Unoccupied
sites are black, and occupied sites are white.
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design are distinguished by different algorithms for choos-
ing the next site for addition based on yield, reminiscent
of systems in biology and engineering where incremental
changes occur through natural selection or design modifi-
cations favoring higher yields. As we increase the density
we obtain ayield curve Y (p). At agiven density the maxi-
mum possible yield is trivially bounded by p (noloss). In
the thermodynamic limit, whenever Y(p) falls below the
maximum yield the mean event size (/) is of the same or-
der as the size of the system.

We first consider random percolation with no design.
Sequences of configurations are generated by randomly
occupying sites. At agiven density all possible configura-
tions are equally likely, and sites are independently occu-
pied with probability p = p, and vacant with probability
1 — p. By trandation invariance, in the thermodynamic
limit, results for the random case are independent of the
distribution of sparks P(i, j). For finite systems edge ef-
fects modify the distribution.

The yield curve is depicted by the lowest curve in
Fig. 2a. At low densities the results coincide with the
maximum yield. Near p = p. = 0.6 there is a crossove,
and Y(p) begins to decrease monotonically with p,
approaching zero at high density. The crossover becomes
sharp as N — o and is an immediate consequence of
the percolation transition, marking the emergence of
an infinite cluster a& p = p.. In the thermodynamic
limit only events involving the infinite cluster result in a
macroscopic loss and Y(p) = p — P2Z(p). Here P.(p)
is the percolation order parameter, i.e., the probability
a given site is in the infinite cluster. A typica random
configuration at peak yield is illustrated in Fig. 1a. The
fractal appearance of the clusters is a key signature of
criticality. The distribution of fires F(c) is asymptotically
a power law, illustrated for N = 64 in Fig. 3a.

The goa of design is to push the yield towards the up-
per bound for densities which exceed the critical point.
This requires selecting nongeneric (measure zero) con-
figurations, which we refer to astolerant states. We define
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FIG. 2. Yield vsdensity Y(p): (a) for design parameters D =
1 (dotted curve), 2 (dot-dashed), N (long dashed), and N2 (solid)
with N = 64, and (b) for D =2 and N =2,22,...,27 run-
ning from the bottom to top curve. The results have been av-
eraged over 100 runs. The inset to (@) illustrates corresponding
loss functions L = log[{f)/(1 — {f))], on a scale which more
clearly differentiates between the curves.
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HOT states to be those which specifically optimizeyieldin
the presence of aconstraint (see Figs. 1b—1d). Asthelevel
of design increases, the connected clusters becomeincreas-
ingly regular in shape and separated by well-defined bar-
riers consisting of closed contours of unoccupied sites. A
HOT state corresponds to aforest which is densely planted
to maximize the timber yield, with fire breaks arranged to
minimize the spread of damage.

To determine HOT states we specify constraints on the
optimization, defined here in terms of a modification of
the random percolation model which incorporates design.
At each increment in density, we generate a set of test
configurations. A test configuration at density p =
(n + 1)/N? is generated from the previous configuration
at density p = n/N? (where n is the number of occupied
sites) by adding a grain to a previously unoccupied site.
In the limiting case, al possible test configurations are
explored. Then, in a manner reminiscent of evolution by
natural selection, the next configuration in the sequence
is taken to be the test configuration which produces the
highest yield upon averaging over P(i,j). If there is
degeneracy, one of the highest yield configurations is
selected at random. We define the design parameter to be
the number D of test configurations which are initially
examined. Thus D lies between D = 1 (random percola-
tion) and D = N? (all possible configurations associated
with the addition of one occupied site are tested).

While the choice of P(i, ) isirrelevant at large N for
random configurations, for designed states knowledge of
P(i, j) can be exploited to produce better designs. For our
numerical examples we use

PG, j) = P(DP()),
P(x) a2+ /Ny, 1)

where m; = 1, o; = 0.4, m; = 0.5, and o; = 0.2. In
Fig. 1 the maximum value of P(i,j) coincides with the
upper left hand corner i = j = 1, while the minimum
valueisin the lower right corner i = j = N. We choose
the tail of a Gaussian to dramatize that power laws emerge
through design even when the external distribution is far
from a power law. We choose an asymmetric distribution
to lift al degeneracies in the maximally designed case
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FIG. 3. Cumulative distributions of events F(c): (a) at peak
yield for D = 1,2, N, and N? with N = 64, and (b) for D =
N2, and N = 64 at equal density increments of 0.1, ranging at
p = 0.1 (bottom curve) to p = 0.9 (top curve).
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D = N?. This leads to a deterministic sequence of
uniquely determined locally optima designs through the
full range of densities.

For D = N?, initialy the low P(i, j) sites are filled, in
what begins as a checkerboard pattern. At higher densi-
ties, the upper left corner remains a checkerboard, while
regions near the lower right corner form a cellular pattern.
The cells consist of compact regions enclosed by well-
defined barriers which are one lattice site wide. As the
density increases further, cells begin to merge. When a
barrier between neighboring cellsis broken, the entire bar-
rier is filled in before other sites are occupied. Figure 1d
illustrates the configuration at the maximum yield point.

As shown in Fig. 3a, the distribution of events F(c)
exhibits a power law tail when P(i, j) is given by Eq. (1).
This is not the case for al P(i,j). If P(i,j) is uniform,
the system evolves towards cells of equal size, while if
the position of the next spark is known, there is no fire.
However, we obtain power lawsfor abroad classof P(i, j),
including Gaussian, exponential, and Cauchy.

There are several noteworthy distinctions between the
distributions obtained for the cases D = 1 (random)
and D = N2. Asymptotically both are characterized
as power laws F(c) ~ ¢~*. However, for the random
case asymptotically the cumulative distribution is very
flat (a = 0.055), while for the designed case a = 1.
Furthermore, averaged over the ensemble of random
configurations, F(c) is smooth and continuous, while
for the designed case the noncumulative distribution
f(c) consists of a discrete set of points (marked by *'s),
associated with the particular set of optimal cells obtained
for the deterministic algorithm. The sizes of consecutive
cellular regions ¢ increase with increasing event size, at a
rate which scales inversely with the rate of decay of the
tails of P(i, j). Thisincrease in size balances the decay of
P(i, j) to produce a power law F(c) in the HOT state.

Interestingly, in the tolerant regime our algorithm pro-
duces power law tails for a range of densities below the
maximum yield, and without ever passing through a state
that resembles the (fractal) critical state. Thisisillustrated
in Fig. 3b where we plot the discrete cumulative event
size distributions F(c) along with a least squares fit to the
power law (excluding the last data point from the fit) for
equal density increments when D = N2. Clearly for very
low densities, the event size distribution does not extend
to large events because there are so few occupied sites.
However, even in that regime, over the limited range of
sizeswhich are present, the distribution is roughly a power
law. At higher densities, the power law extends to large
events for a broad range of densities. In this regime, the
key distinction between the distributions is a relative sup-
pression of the amplitude of the tails for lower densities.
At moderate densities, the largest domain is essentially
formed, while the neighborhood of the upper left hand cor-
ner retains the checkerboard pattern, contributing a sharp
spike in F(c) a ¢ = 1/N?. Thus backing away from the

maximum yield point (a strategy commonly employed in
engineering), the distribution retains heavy tails, but the
overall rate of large events decreases. The fact that power
laws are not a special feature associated with a single den-
sity isin sharp contrast to atraditional critical phenomena.

Next we turn to the case of intermediate values of the
design parameter, 1 < D < N2, so that only a subset of
the possible test configurations is considered at each den-
sity increment. A sequence of maximum yield configu-
rations for increasing values of D isillustrated in Fig. 1.
Already for D = 2, thereis aclear preference for occupy-
ing sites in the lower right corner of the lattice, while the
boundaries between regions are poorly formed compared
to the deterministic case. However, for D = N, the cdl-
lular structure of the HOT state is clear, with only a few
“flaws,” corresponding to unoccupied sites in the middle
of regions rather than on a boundary. Because the algo-
rithm is stochastic when D < N? the specific cellular pat-
tern corresponding to the maximum yield point for agiven
realization depends on the history and differs from that ob-
tained in the deterministic design.

Yield curves for D = 1,2, N, and N? are included
in Fig. 2a. On average, the peak yield increases mono-
tonically, and the dropoff beyond the maximum yield point
becomes increasingly sharp with increasing D. We ob-
serve instances of higher yields for specific configurations
in cases with less design since the algorithm is locally,
rather than globally, optimized. Furthermore, even for
relatively small values of D the maximum yield is quite
close to that obtained for the deterministic case.

We define a loss function L = log[{f)/(1 — ()],
which is plotted as a function of log[p/(1 — p)] in the
inset to Fig. 2a. Compared to Y(p), these curves more
clearly reflect the differences for different values of D at
low and high densities. The loss is greatest in the random
case for the full range of p, including low densities where
there is no discernible distinction in Y because (f) is not
macroscopic. Interestingly, both Y and L nearly coincide
for D = N and N? (the curvefor D = N? ismore jagged
because the deterministic case is not smoothed by an
ensemble average over the selection of test sites). While
at most densities D = 2 has greater losses compared to
D = N or N2, the curves cross at a density beyond the
maximum yield points, indicating that the lower level
of design D = 2 is more robust in the regime which is
dominated by large failure events.

The corresponding distributions of events areillustrated
in Fig. 3a. Asinthe case D = N?, the distributions F(c)
are discrete power laws when averaged over P(i,j) for
each redlization of the stochastic designs. As illustrated
inFig. 3a, for D = 2 and N when we average over the en-
semble of configurations the distribution becomes smooth
for smaller values of ¢, with a discrete jJump separating the
largest events. Here the rapid growth in the separations
between points in the discrete F(c) is sufficient to prevent
smoothing of the range of largest events in the ensemble
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average. Comparing different valuesof D > 1, we seethat
the relative weight of the largest event isincreasingly sup-
pressed as the level of design isincreased from N = 2 to
N to N2, indicative of a sequence of improved designs.

As N increases [refining the grid so that the range of
P(i, j) is held constant], the maximum yield associated
with each value of D increases systematically towardsY =
1. Thisis illustrated for D = 2 in Fig. 3b. Even the
case D = 2 corresponds to a diverging number of design
choices as N — «. As a consequence, the relative cost
in yield of occupying less favorable sites is reduced for
larger N.

Because random states dominate the set of all possible
configurations, properties of the measure zero subset
of HOT states are ignored in conventional statistical
physics. However, in the limit of large N we achieve high
yield HOT states for a variety of (measure zero) design
scenarios. Thisis especidly true in the percolation model
where barriers can be designed at a cost which vanishes
in the limit of large N: the cost of a barrier scales like N
compared to the yield of a region which scales like N2.
As aresult even regular grids lead to high yields for large
N, regardless of P(i,j). A regular grid design does not
optimize the placement of the grid lines for afinite system
unless P(i, j) is uniform.

The special design features which the HOT states de-
velop through the local evolutionary agorithm are high
concentrations of occupied sites in regions of low P(i, j)
and cellular structures separated by barriers. These fea
tureslead to robust, high yield states at densitieswell above
the random critical point. For a given density the expected
event sizes associated with HOT states are much smaller
than those of random configurations. In Fig. 3a the ran-
dom case exhibits the flattest distribution with events of
the largest average size, in spite of the fact that it corre-
sponds to the lowest density. However, the design features
of HOT states also lead to new sensitivities which increase
with increasing levels of design. For example, HOT states
aresensitiveto changesin P(i, j). If the systemisdesigned
for a Gaussian P(i, j) [e.g., EQ. (1)] but then subject to a
uniform distribution of hits, then the distribution of events
increases with the size of the region: f(c) ~ c, resulting
in the most dramatic change in the distribution of events
when D = N?2. In contrast, the random critical stateis es-
sentially independent of P(i, j). Furthermore, HOT states
are highly sensitive to design flaws. If a vacant site on
the barrier between neighboring regions is filled, then an
event triggered on either side penetrates the barrier joining
surrounding regions. In contrast, in random configurations
small changes do not alter the distribution of events.

Percolation seems to be the simplest template for intro-
ducing HOT states and contrasting their properties with
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criticality. Even the random case can be viewed as a very
primitive design with density as the only design parameter.
In this case, the critical point coincides with the maximum
yield, making this a natural alternative to SOC whereby
primitive systems might evolve to criticality. More im-
portantly, adding even modest levels of additional design,
such as choosing one of two random sites at each density,
moves yields well above the random critical point.

The complexity which arises in EOC/SOC, as well as
more generaly in statistical physics, is a generic property.
Features associated with sets of measure zero in configu-
ration space are disregarded. This traditional approach
leaves out some of the most fundamental properties of the
complex systems which arise in biology and engineering,
and which tend to have al the features of the HOT state.
Here only sets of measure zero are retained as systems
are refined through design or evolution towards states of
increasing complexity. As our simple percolation model
suggests, such designs need not be deterministic or glob-
aly optimal, but can result from stochastic local and in-
cremental evolution that characterizes natural selection as
well as most engineering innovation.

In advanced systems, designed features are so domi-
nant and pervasive that they are easily taken for granted.
While generic complexity emerges from a featurel ess sub-
strate, the complexity in designed systems often leads to
apparently simple, predictable, robust behavior. Domain
specific models of such systems are often complicated,
with agreat deal of built-in structure included to reproduce
the extreme robustness and sensitivities of these systems.
Thus while the forest fire analogy in this paper is useful
pedagogically, our models have limited direct relevance to
real forest fires. Nevertheless, rare, structured, HOT states
must be the building blocks of any theory of complex sys-
tems which is of relevance to biology and engineering.
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