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Theory of Quantum Error Correction for General Noise
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A measure of quality of an error-correcting code is the maximum number of errors that it is able to
correct. We show that a suitable notion of “number of errors” e makes sense for any quantum or clas-
sical system in the presence of arbitrary interactions. Thus, e-error-correcting codes protect information
without requiring the usual assumptions of independence. We prove the existence of large codes for both
quantum and classical information. By viewing error-correcting codes as subsystems, we relate codes to
irreducible representations of operator algebras and show that noiseless subsystems are infinite-distance
error-correcting codes.

PACS numbers: 03.67.Lx, 89.70.+c
The chief reason for the robustness of quantum compu-
tation [1–4] is the ability to use quantum error-correcting
codes [5,6] to maintain information stored in qubits (two-
state particles) subject to environmental noise. Quantum
error-correcting codes are defined as subspaces of the
qubits’ state space with the property that an initial state in
this subspace can be recovered if sufficiently few of the
qubits experience errors. Provided the noise affecting dif-
ferent qubits is independent and not too intense, any quan-
tum state stored in the subspace can then be regained with
high fidelity. This view suffers from several disadvantages.
Notably, it is neither obvious whether collective errors can
also be corrected well nor is it clear in what sense the in-
formation is preserved before it is recovered by correcting
the errors. In addition, the present theory does not directly
lend itself to the application of similar ideas to physical
systems that are not canonically decomposable into qubits
or are subject to different interaction Hamiltonians.

In this Letter, we overcome the above inconveniences by
introducing a description of arbitrary system-environment
couplings in terms of an interaction algebra. The degree of
an operator in this algebra determines the temporal order
with which the operator can affect the system, regardless of
the internal evolution of the environment. For qubits with
independent one-qubit interactions, the degree is given by
the “number of errors” as defined in combinatorial error
analysis. We find that the generalization of minimum dis-
tance relates to error correction in the usual way and show
that large codes exist depending solely on the dimension
of the linear space of errors of a given degree.

Using algebras to classify errors naturally leads to alge-
braic methods for describing error-correcting codes. The
basic idea is to revisit the notion of error-correcting codes
as “abstract particles” [7] that are associated with irre-
ducible representations (irreps) of operator algebras closed
under Hermitian conjugation (y-closed). Accordingly,
error-correcting codes can be viewed as subsystems (i.e.,
tensor factors of subspaces), which makes it clear where
the protected information resides. This generalizes a trivial
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example: Suppose that errors affect all but the first qubit.
Then information in the first qubit is clearly safe, and the
qubit can be regarded as noiseless. We show that noise-
less subsystems are equivalent to infinite-distance error-
correcting codes, and provide the most general method
of noise-free information storage, thereby substantially
extending the concept of noiseless subspaces [8,9].

Systems and noise.—Let S be a quantum system with
state space S . (Fonts are used to distinguish between
systems and their state spaces.) S is an N-dimensional
Hilbert space. S interacts with the environment B via an
interaction Hamiltonian J that can be written in the form

J �
X

i

Ji ≠ Bi , (1)

where the Bi’s are linearly independent environment op-
erators. We assume that the internal evolution of B is re-
moved from J by requiring that tr�Ji� � 0 for all i. The
internal evolution of S is retained. If desirable, the latter
can be absorbed into a rotating frame, at the expense of
making the operators Ji time dependent. This can be ac-
commodated within the present formalism through appro-
priate redefinitions of the relevant quantities. Our analysis
depends on the noise-inducing interaction (1) only through
the overall noise strength l � jJj, where jJj is the maxi-
mum eigenvalue of

p
JyJ. The above quantity can be

infinite in situations involving infinite-dimensional envi-
ronments, e.g., the modes of an electromagnetic field. In
such cases a redefinition of l is necessary, based on ad-
ditional information about the initial state and the inter-
nal evolution of the environment. A prototype example is
Markovian noise, which will be discussed later.

The second concept we introduce is the interaction
algebra, which is the algebra J generated by J1 �
span�I, J1, J2, . . .�, I denoting the identity. Thus, elements
of J are linear combinations of products of operators in
J1. The linearly closed set J1 consists of the operators
of degree (at most) one. Next define Jd � J

d
1 , the linear
© 2000 The American Physical Society 2525



VOLUME 84, NUMBER 11 P H Y S I C A L R E V I E W L E T T E R S 13 MARCH 2000
span of products of d or less operators in J1. These
are the operators of degree (at most) d [10]. J1 is well
defined in the sense that it is independent of the choice
of operators Bi , provided that they are linearly indepen-
dent. Because the interaction Hamiltonian is Hermitian,
J1 is y-closed, implying that Jd and J are y-closed.

This general formalism applies to qubits with the stan-
dard error models. If S consists of n qubits, then N � 2n,
and a linear interaction satisfies that each Ji involves only
Pauli operators s

�k�
u acting on one qubit. Here k is a qubit

label, k [ �1, . . . , n�, and u is one of x, y, or z. Collective
linear interactions involve global operators Ju �

P
k s

�k�
u ,

corresponding to a situation where a single environment
couples symmetrically to all qubits [8]. In most discus-
sions of quantum error correction, the interaction is as-
sumed to be independent, meaning that each qubit interacts
with its own environment [7]. Independent interactions are
linear. For linear interactions with qubits, Jd consists of
linear combinations of products of at most d Pauli opera-
tors. Note that the Lie algebra generated by J1 need not
include the higher-order errors: The Lie algebra generated
by the linear interactions contains only linear interactions,
while the effect of an environment coupled linearly can in-
clude any other higher-order operator and is not restricted
to the unitary group generated by the Lie algebra.

Minimum distance and error correction.—Noise for S
can now be analyzed purely in terms of J1 and l. By
straightforward generalization of the definitions for qubits
and independent interactions, we can define a minimum
distance d quantum code for S and J1 as a code that detects
[11] all errors in Jd21. Recall that a (quantum) code of S
is a subspace C , S , which can be defined through the
associated projector PC . Error E is detected by C if the
following protocol works: (1) Prepare a state jc� in C .
(2) Allow error E to occur, so that the new state is Ejc�.
(3) Make a measurement to detect whether the state is in
C or in the orthogonal complement; the outcome is either
PCEjc� or �I 2 PC �Ejc�. (4) Accept the state in the
former case and reject it otherwise. The protocol is correct
if accepted states are proportional to the initial state, i.e.,
formally, PCEPC � aEPC .

In many cases we need to preserve only classical infor-
mation. We define a code to have minimum c-distance d if
a basis of C exists, such that the above protocol is correct
when restricted to basis elements. We will use the term
c code to denote a code intended only for transmission of
classical information in some basis. The notion of error de-
tection can be extended to c codes if a transmission basis
is provided. Thus, we say that the c code C with orthonor-
mal basis jc1�, jc2�, . . . detects E if �cijEjcj� � ai,Edi,j.

An e-error-correcting code permits correction of all er-
rors in Je, which means that an initial state in the code
can be recovered by some fixed quantum operation after
an error in Je has occurred. Minimum distance is related
to error correction in the usual way.

Theorem 1: A minimum (c-) distance 2e 1 1 code is an
e-error-correcting (c) code.
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Proof: Recall the necessary and sufficient conditions for
a code C to permit correction of the errors in Je [7,12]:
C detects the operators in J y

e Je. This condition is also
valid for c codes with a transmission basis. Since J y

e Je ,
J2e, the result follows. �

Error bounds.—To make the analysis based on mini-
mum distance and e-error correction useful, it is necessary
to show that e-error-correcting codes protect information
well. We give a quantitative relationship for the worst-case
error as a function of time t. Error is measured in terms of
error amplitude, which is the amplitude of the part of the
state orthogonal to the intended state.

Theorem 2: The error amplitude of information
protected in an e-error-correcting (c) code is at most
�lt�e11��e 1 1�!.

We defer the proof until after error-correcting codes
have been characterized as subsystems. Note that inde-
pendence from the internal Hamiltonian of the environ-
ment implies that even if the latter is subject to arbitrary,
adversarial manipulation, the error-correcting code still ef-
fectively protects information on a time scale of O�1�l�.

Existence of large codes.—A goal of constructing good
error-correcting codes is to maximize the dimension of
minimum (c-)distance d codes. The greedy algorithm
for constructing good minimum-distance classical codes
works well in the general case. Let �E1 � I ,E2, . . . ,ED�
be a basis of Jd21, with dimension D, and let dxe denote
the least integer $x.

Theorem 3: There exist codes of S with minimum
c-distance d of dimension at least d

N
D e.

Proof: Minimum c distance is equivalent to the exis-
tence of an orthonormal basis jc1�, . . . , jck� of the c code
such that, for each operator El to be detected,

�cijEljcj� � ai,ldi,j . (2)

The proof greedily constructs such a basis. Let jc1� be any
state of S. Suppose that jc1�, . . . , jck� have been found,
fulfilling (2). Choose jck11� orthogonal to the vectors
Eijcj�, i � 1, . . . ,D, j � 1, . . . , k. Such a state exists
provided that kD , N . The new set of jci� satisfies (2).
Upon continuing until the set cannot be extended, a c code
of dimension at least N�D is found. �

Our best general construction of good codes for quantum
information is based on finding a subcode of a c code.

Theorem 4: There exist minimum-distance d codes of S
of dimension at least d

N
D e

1
D11 .

Proof: Let C be a c code of S of dimension at least dND e
with basis jci� satisfying (2). Let Y be the set of indices
of the basis vectors. To construct a large quantum code,
we seek a partition of Y into subsets Yi and non-negative
coefficients bi,j , satisfying

P
j[Yi bi,j � 1. Let jqi� �P

j[Yi

p
bi,j jcj�. Then the orthonormal vectors jqi� span

the desired code provided

�qijEljqj� � gl di,j, ; i, j, l . (3)

Compute gl,i �
P
j[Yi bi,jaj,l , the aj,l’s being given in

(2). We need the gl,i to be independent of i. This
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problem can be cast in terms of a convex sets problem.
We need to find as many disjoint subsets of the set of vec-
tors �aj � �aj,l�l with the property that their convex clo-
sures have a common intersection. Since Jd21 is y-closed,
the �aj live in a subspace of real dimension D. By in-
voking a generalization of Radon’s theorem [13], a neces-
sary condition for the existence of at least r such sets is
r�D 1 1� 2 D # dN�De. The result follows. �

Subsystems.—If a system consists of a number of
qubits, the obvious subsystems are the qubits. If the
system consists of a number of photon modes, each mode
is a subsystem. However, in order to use these modes as
qubits, one could choose the two polarization states for
a single photon in a mode as the computational basis.
The relevant system is then the subspace where each
mode is occupied by exactly one photon, and it is in this
subspace that we can identify the qubit subsystems. In
both examples, subsystems appear as factors (in the tensor
product sense) of subspaces of a larger state space. To
avoid working with explicit bases and states, it is conve-
nient to resort to a general algebraic definition. We shall
characterize a subsystem of S in terms of a subalgebra of
operators acting on S together with an irrep of the subal-
gebra. This is motivated by the following result from the
representation theory of y-closed operator algebras [14].

Theorem 5: Let A be a y-closed algebra of operators
on S , including the identity. Then S is isomorphic to a
direct sum,

S �
X

i

Ci ≠ Zi , (4)

in such a way that in the representation on the right-hand
side, A �

P
i Mat�Ci� ≠ I �Zi� and the commutant of A

is given by Z�A� �
P
i I

�Ci� ≠ Mat�Zi�.
Here, Mat�H � means the set of all linear operators

from H to itself, while Z�A� is the space of all opera-
tors commuting with A. Formally, each factor Zi �Ci� in
Theorem 5 defines a subsystem of S with associated state
space Zi �Ci�. Accordingly, subsystems are naturally de-
finable in terms of either algebras or their commutants.

Noiseless subsystems.—Consider the interaction alge-
bra J associated with (1). Since J is y-closed, the rep-
resentation of Theorem 5 applies. For each subsystem Zi ,
states in Zi are completely immune to the interaction, as
the interaction operators act only on the cofactor Ci . Thus,
Zi is a noiseless subsystem, i.e., a subsystem where in-
formation is intrinsically stabilized against the effects of
the noise with no need for corrective action. Noiseless
subspaces [8,9] can be recognized as special cases of the
general decomposition (4) for interaction algebras support-
ing one-dimensional irreps, in which case dimCi � 1 for
some i’s. However, noiseless subsystems can exist in the
absence of noiseless subspaces.

Example.—Let us consider three qubits A, B, C with
collective linear interactions. The interactions are the gen-
erators for spatial rotations. As pointed out in [8], no
state of three qubits is invariant under spatial rotations, the
minimal implementation of a noiseless subspace requir-
ing n � 4 qubits. However, the state space decomposes
into one spin- 3

2 and two spin- 1
2 irreducible subspaces. The

two spin- 1
2 components together are representable as the

product of two two-state spaces as in Theorem 5, with J
acting only on the first. Thus the second one is a noiseless
subsystem. Another method of finding this subsystem is
to observe that the commutant Z�J � is nontrivial. In par-
ticular, it includes the scalars under spatial rotations,

s1 � s�A�
x s�B�

x 1 s�A�
y s�B�

y 1 s�A�
z s�B�

z , (5)

s2 � s�A�
x s�C�

x 1 s�A�
y s�C�

y 1 s�A�
z s�C�

z , (6)

which are generating observables for the noiseless sub-
system. Equivalently, the latter is seen to support one of
the irreps of the algebra generated by the scalars.

Error-correcting codes as subsystems.—The traditional
view of error-correcting codes involves encoding the infor-
mation and correcting errors after the information carriers
are transmitted through a noisy channel. The concept of a
noiseless subsystem shows that, for the purposes of infor-
mation maintenance, it is not necessary to correct errors,
insofar as they affect components independent of the sys-
tem where information is stored. In general, we wish to
protect the information against all errors in Je for some
reasonably large e. Since a subsystem unaffected by the
operators in Je is automatically noiseless, but in most cases
of interest noiseless subsystems do not exist, one needs to
take an active role in maintaining information. Rather than
using error correction to restore the overall state of the sys-
tem after errors happened, we propose to use a quantum
operation before the latter occur, in such a way that the net
effect of the quantum operation followed by errors in Je
assures preservation of the information in a subsystem. A
quantum operation is described by a family A � �Ai�i of
linear operators acting on S , evolving the system density
operator as r �

P
i AirA

y
i . Assuming that no error takes

place during the quantum operation A, the combined ac-
tion of A, followed by errors in Je, is represented by the
product of an operator E [ Je and one of the operators
Ai [ A. Thus, a state of a noiseless subsystem of the
y-closed algebra generated by JeA is preserved in this
process.

Theorem 6: Every e-error-correcting code arises as a
noiseless subsystem of JeA for some A with the prop-
erty that I [ span�AyA�. Conversely, every noiseless
subsystem of JeA with A satisfying the above condition
corresponds to an e-error-correcting code.

Proof: The fact that error-correcting codes yield such
noiseless subsystems follows from Theorem III.5 of [7]
by letting A consist of operators that return the state of
the error system to the state jE �0�� (using the language
of and in the notation of [7]). Conversely, the condition
I [ span�AyA� ensures the existence of a quantum
operation whose operators are in A. Thus, the pro-
cess suggested earlier protects the information against
errors in Je. Because of the necessity of the conditions
2527
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for error-correcting codes [7], there exists an associated
e-error-correcting code in the usual sense. �

As a consequence, noiseless subsystems are infinite-
distance quantum error-correcting codes.

Error analysis.—We now prove Theorem 2 by viewing
error-correcting codes as subsystems protected by an initial
quantum operation A.

Proof of Theorem 2: By purifying the environment [15],
we can assume that the environment’s initial state is jc�B.
The initial state of the system has the intended state in
the subsystem associated with the error-correcting code.
Again, by purifying and by adding the reference system
to S, we can assume that the state is given by jf0�S . The
quantum operation A can be assumed to arise from a uni-
tary evolution U applied to jf0�Sj0�A, A being an ancillary
system. Let jf� � Ujf0�Sj0�A and consider the subse-
quent interaction with the environment over time t. By
slicing t into intervals of duration t�n, the overall evolu-
tion up to time t can be written as (h̄ � 1)

lim
n!`

nY

k�1

dU
�S�
k dU

�B�
k jf� jc�B , (7)

where dU
�S�
k , dU

�B�
k denote the unitary evolutions during

the kth interval due to J and to the environment’s inter-
nal Hamiltonian, respectively. It suffices to consider a
first-order expansion dU

�S�
k � I 2 iJ�t�n� 1 O	�t�n�2
.

The elements contributing noise all involve at least e 1 1
factors of J. By distributing some of the sums I 2 iJt�n
starting at the first time interval, the expression inside the
limit can be thought of as a sum over the branches of a bi-
nary tree of products of operators associated with the edges
and nodes of the tree. The root node is labeled dU

�B�
1 , and

its two edges by I and 2iJt�n, respectively. The two chil-
dren are labeled by dU

�B�
2 , their descendant edges by I and

2iJt�n and so on. We choose to terminate a branch at a
point where there are e 1 1 factors of 2iJt�n on its path
and label the leaf with the remaining product of unitary
operators. The total error is estimated by summing the
error amplitudes associated with the products along each
of these terminated branches. A counting argument shows
that there are � n

e11 � such branches. Recalling that unitary
operators preserve the amplitude, the error of each such
branch is bounded by �lt�n�e11. Hence, the error ampli-
tude is at most � n

e11 � �lt�n�e11 # �lt�e11��e 1 1�!. �
Markovian noise.—When the noise is to a good ap-

proximation Markovian, the state of the system evolves
as r � rt � limn!` L

n
t�n�r�, where the superoperator

Lt�n takes the form Lt�n�r� � r 1 �t�n� �
P
i LirL

y
i 1

Vr 1 rVy� 1 O	�t�n�2
 for appropriate operators Li
and V [16]. Our techniques apply with J1 given by the
linear span of I , these operators, and their Hermitian trans-
poses. By suitably modifying the proof of Theorem 2,
one can show that the same bound holds for an e-error-
correcting (c) code with Markovian noise provided one
2528
replaces error amplitude with error probability and rede-
fines l as l � 2jV j 1 jL1j

2 1 jL2j
2 1 . . . . Since error

probability is what is commonly used in the description
of noise processes, this further connects our formulation
of error correction to the usual one.

Conclusion.—By incorporating the description of
the error process within a general algebraic setting, we
showed how to reformulate quantum error correction
without restricting the statistical properties of the environ-
mental noise. The existence of large codes was established
for both classical and quantum information, opening the
way to accurate quantum computations in the presence of
arbitrary errors. In addition to substantially strengthening
the power of quantum error-correction theory, our analysis
points to the notion of a noiseless subsystem as a unifying
framework for quantum information protection. Full
exploitation of the above concept might prove fruitful in
the general context of quantum information processing.
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