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Enhanced Instability of Strained Alloy Films due to Compositional Stresses
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A single-component strained film is known to be unstable to the stress-driven morphological insta-
bility. Here, we determine how the instability is modified in an alloy film by considering the effect of
compositional stresses due to an atomic size difference. We find that the coupling of composition to
stress always makes the film more unstable to the formation of stress-driven surface undulations. The
destabilization is greatest over a range of intermediate deposition rates.

PACS numbers: 81.15.Aa, 68.55.–a
The growth of planar strained films is a much sought-
after goal in the fabrication of electronic and optoelectronic
devices. Unfortunately, elastic relaxation drives a morpho-
logical instability of the film surface and results in nonpla-
nar films. Thus, controlling the instability is important to
the growth of planar-layer devices. On the other hand, in
some cases the instability can result in the formation of
small islands, which can form the basis for quantum dot
devices. In this case, determining the characteristics of the
initial instability gives information about the formation of
quantum dots.

The stress-driven morphological instability [1–3] has
been studied extensively for single-component films (for
a review, see [4]). A small sinusoidal variation of the
surface height causes some reduction of elastic stress at
the peaks, with an increase in stress at the troughs. The
resulting chemical-potential gradient drives diffusion from
troughs to peaks, causing the height modulation to increase
with time. The surface energy of the film tends to oppose
this, but at long wavelengths the elastic effect is always
dominant for nonfaceted systems.

While the instability is understood for single-component
materials, many strained layers of interest are alloys. It
is expected that the stress-driven morphological instability
will still occur in strained alloy films; however, the in-
stability might be drastically modified by the interaction
between composition and stress. An important issue re-
garding the instability is whether the linking of composi-
tion and stress makes alloy film more or less unstable than
the single-component case.

In recent years, there has been much theoretical work
aimed at describing this complicated interaction. This
work has focused on determining the effect of compo-
sitional stresses due to different size atoms, neglecting
the influence of variations in the material properties with
composition. From thermodynamic considerations it has
been shown that a strained alloy film would be unstable if
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the coupling between the composition and surface modu-
lations could be chosen arbitrarily [5]. Of the recent
theoretical models which describe the surface dynamics
[6–13], each finds that the strained alloy film can be less
unstable than the corresponding single-component film,
and in some cases the instability can be completely sup-
pressed, suggesting that the coupling of composition and
stress can be a stabilizing influence on the growth of planar
alloy films.

Here, we present a new analysis of the role of compo-
sitional stresses in determining the stability of alloy film
growth. The difference between our work and previous
models is the description of how surface diffusion causes
changes in the surface morphology and surface compo-
sition of the film, as explained below. We find, for the
case of composition-independent material properties, that
compositional stresses always make the alloy film more
unstable than a single-component film. This prediction
is a fundamental difference from previous analyses. We
also find that the effect of the coupling on film stabil-
ity is dependent on the deposition rate, with the largest
destabilization occurring over a range of intermediate de-
position rates. Thus, as in the case of a single-component
film, a strained alloy film is always unstable for constant,
isotropic material properties [14]. These results have im-
portant implications for the growth of strained alloy films.

As with the previous work [5–13] we assume that the
material properties are independent of composition (the ex-
ception is that [12] also permits a composition-dependent
Young’s modulus). The assumption of composition-
independent properties is made to isolate the specific
effect of compositional stresses on film stability. A more
complete theory, accounting for the composition depen-
dence of material properties, could be developed within
the framework presented here. Recent work has shown
that species-dependent surface mobilities can control
segregation during step-flow growth [15]. It is anticipated
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that different surface mobilities might significantly modify
the stability results presented here, but our concern is with
the specific effect of compositional stresses [14].

We consider the growth of a substitutional AB alloy as
a strained layer with a surface z � h�x, y, t�, and compo-
sition of B atoms CB�x, y, z, t�. We assume that the film
is grown by a generic deposition process due to a flux of
atoms from above, the composition of which determines
the average film composition of B atoms, C0. Atoms de-
posited on the surface stick can move by surface diffu-
sion before being buried as new material is deposited from
above. Once incorporated into the solid, any composition
variations are “frozen in” as we assume that bulk diffusion
is negligibly slow. Under these assumptions, conservation
of atomic species at the surface of the film gives two evo-
lution equations for the normal velocity of the surface Vn

and the surface composition:

Vn � V�F ? n 2 =S ? J� , (1)

d
≠CB

≠t
1 CBVn � V�C0�F ? n� 2 =S ? JB� , (2)

where V is the atomic volume, F � 2�V�V�ẑ is the vec-
tor deposition flux (in the 2z direction giving rise to a
nominal growth rate V ), n is the outward normal of the
surface, =S is the surface gradient, d is the thickness of
the surface layer in which surface diffusion occurs, and J
and JB are the total flux and flux of B atoms, respectively,
diffusing along the surface. The surface diffusion flux is
based on a standard mobility/driving force model [16]

Ji � 2CiMi=Smi , (3)

where subscripts denote the different species �i � A, B�,
Mi is the (constant) surface mobility, and mi is the chemi-
cal potential. We assume for simplicity that the A and B
atoms have the same surface mobilities MA � MB � M.
From the thermodynamics of stressed solids [17,18], we
derive how the chemical potential of a surface atom is
modified by the effect of stress,

mA � mA�CB� 1 V

∑
1
2

SijklTijTkl 1 gk 1 hCBTkk

∏
,

(4)

where mA�CB� is the chemical potential of component A at
composition CB in the absence of stress, Tij is the stress
tensor, Sijkl is the linear elasticity compliance tensor, k is
the mean interfacial curvature, and g is the surface free-
energy parameter, taken as composition independent. The
important parameter h is the solute expansion coefficient
measuring the size difference between A and B atoms, and
is defined as h � �aB 2 aA��a0 where aA, aB, and a0 are
the relaxed-state lattice parameters for pure A, pure B, and
the alloy film of nominal composition C0. Note that when
A and B are the same species, h � 0 and we recover the
chemical potential for a single-component material (see
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[1,3,4], for example). A result similar to Eq. (4) holds for
mB. The constitutive law for isotropic linear elasticity in
the presence of solute expansion effects is

Tij � Cijkl�Ekl 2 h�CB 2 C0�dkl� , (5)

where Cijkl is the tensor of elastic constants, Ekl is the
elastic strain tensor measured with respect to the stress-free
film, and h�CB 2 C0�dkl is the strain due to composition
variations of different size atoms on a perfect crystal lat-
tice. We focus here on the generic stability results of the
film, so we take the elastic constants in the film and sub-
strate to be identical and independent of composition. The
equilibrium stress state of the epitaxially strained film with
lattice mismatch strain e is then accurately modeled as a
semi-infinite solid with an applied biaxial strain due to the
misfit [19]: the state of stress in the film is described by
a divergence-free stress tensor in the solid, a traction-free
film surface, and strains in the solid approaching that of
uniform biaxial misfit strain e as z ! 2`.

The difference between our work and previous analyses
[6–9,11–13] is in the surface dynamics. Guyer and
Voorhees [6–9] assume that the surface of the film is in
local equilibrium. By equating the chemical potential of
surface atoms with that of atoms in the overlying vapor,
the local equilibrium condition determines the surface
composition CB in terms of the local surface curvature
and stress. The dynamics for the surface Vn are then
determined from an equation of the form of Eq. (2) with
the surface layer thickness d set to zero. While the local
equilibrium assumption may be appropriate at high vapor
overpressures, we argue that for typical molecular beam
epitaxy conditions the overlying vapor pressures are so
small that local equilibrium is not established during
growth. Instead, surface compositions are determined
dynamically from the conservation of mass equations (1)
and (2) in which the surface flux of each species is
determined by Eq. (3). Leonard and Desai [11–13]
use dynamics for the surface equivalent to Eqs. (1) and
(2); however, they assume a different form for the total
surface flux of atoms along the surface J. Instead of each
species diffusing independently according to Eq. (3) with
J � JA 1 JB, their model for the total flux is equiva-
lent to a gradient of a composition-weighted chemical
potential, J � 2M=s�CAmA 1 CBmB�. In our work the
surface flux is J � 2�CAMA=s�mA� 1 CBMB=s�mB��,
and the different J leads to different stability predictions.
We argue that the underlying physics of different species
diffusing independently along the surface is more correctly
represented by Eq. (3) rather than the total surface flux
used by Leonard and Desai.

The stability of a compositionally uniform planar film
during growth is determined from a linear stability analysis
of the evolution equations (1) and (2). The growth or decay
of perturbations is determined using normal modes, which
for the surface shape takes the form

h�x, y, t� � Vt 1 ĥ exp�st 1 iaxx 1 iayy� , (6)
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where ĥ is the amplitude of the surface perturbation, and
s is the growth rate of the perturbation with wave numbers
ax and ay in the x and y directions, respectively. Similar
representations for the composition and stress involve the
amplitudes of the composition perturbation ĉ and stress
perturbation T̂ij . The existence of nontrivial solutions to
the linearized system for the perturbation determines the
growth rate s of the perturbation in terms of its wave
numbers.

The results are conveniently expressed in nondi-
mensional variables using a length scale L �
g�1 2 n��2E�1 1 n�, a time scale t � L4�MV2g,
and a stress scale s0 � 2E�1 1 n���1 2 n�, where E
is Young’s modulus and n is Poisson’s ratio. Typical
values for the length and time scales at 800 K are
L � 6 3 10210 cm and t � 3 3 10212 s (t is sensitive
to material and temperature because of the dependence on
the surface diffusion coefficient). These length and time
scales are typically multiplied by factors of 1�e2 and 1�e8

to give the actual length and time scales relevant to the
instability [19] (for e � 0.02 this gives L�e2 � 15 nm
and t�e8 � 2 min), but we have kept e separate from
the scalings to more clearly illustrate its role. The d term
appearing in Eq. (2) is negligible as long as the time scale
for the instability is much longer than the time it takes to
deposit a monolayer, 1�s ¿ d�V . Since this criterion
is generally valid except at very low growth rates, high
misfits, and high temperatures, we present results here for
d � 0.

Using these scalings for all variables, the characteristic
equation for the nondimensional growth rate of perturba-
tions can be written

s � e2a3 2 a4 1

∑
Ce2h2a5

V 1 Ca2�g 2 h2p�

∏

3

∑
a

�a 1 s�V �

∏
, (7)

where a � �a2
x 1 a2

y�1�2 is the nondimensional magnitude
of the wave number vector, and p � a��a 1 s�V � 2

1��1 1 n�. In addition, the new nondimensional parame-
ters C , V , and g quantify the nominal film composition
C � C0�1 2 C0�, the deposition rate V � Vt�L, and
the chemical energy g � G00

M�V0s0, where G00
M is the sec-

ond derivative of the molar Gibbs free energy at the nomi-
nal film composition, and V0 is the molar volume. Note
that only combinations of e2 and h2 appear in the equation
for the growth rate, which means that the stability results
are independent of the sign of e and h.

Case (i): no solute stresses (h � 0, e fi 0).—In this
case we recover the usual stability results for the stress-
driven instability [1,3,4], with s � e2a3 2 a4. Thus, the
surface is always unstable to a range of wave numbers with
0 , a , e2. The mode of instability in this case is purely
morphological; the surface develops undulations but the
composition remains uniform because there is no coupling
between the composition and stress. Also, the stability of
the surface is independent of the nominal composition C ,
the growth rate V , and the chemical energy g. (Note that,
even though the film is unstable, if the growth rate s is
small, then over the time it takes to deposit the film the
instability will not become apparent [20].)

Case (ii): coupled case (e fi 0 and h fi 0).—For a
given set of conditions the growth rate of the instability
depends on the wave number of the perturbation. The
wave number that gives the largest growth rate corresponds
to the perturbation that dominates the initial stages of the
instability. Figure 1 shows that for h fi 0 the maximum
growth rate of the instability is increased, indicating that
compositional stresses destabilize the alloy film relative
to the corresponding single-component case. For large
h at intermediate deposition rates the growth rate of the
instability can be orders of magnitude larger than that of
the h � 0 case.

When h exceeds a critical value (not shown in Fig. 1)
such that g , h2n��1 1 n� the growth rate of the insta-
bility becomes unbounded as a ! `, even if there is no
misfit strain. This divergence is a manifestation of the
compositional-stress instability [6–9,21], also known as
the kinetic instability [22–24]. In this case, the growth pro-
cess enables a fine-scale surface decomposition of the al-
loy, even at temperatures above the chemical spinodal. The
divergence in our model occurs because we do not include
gradient-energy terms which become important when the
wavelength of the perturbation approaches the lattice spac-
ing. Including these gradient-energy terms would cause
very short wavelength perturbations to decay, and elimi-
nate the nonphysical divergence in our results when g ,

h2n��1 1 n�.
The wave number of the most unstable mode is shown

in Fig. 2 for the same set of parameters as in Fig. 1. The
general trend is that the interaction of composition and
stress causes a shift in the most unstable wave number
to larger values. For sufficiently large h (e.g., h � 0.2)
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FIG. 1. Maximum growth rate s of the instability as a function
of nondimensional deposition rate V for h � 0, . . . , 0.20 in
steps of 0.05. Other parameters here are e � 0.05, C � 0.25,
n � 0.25, and g � 0.01. The perturbation grows as est .
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FIG. 2. Wave number a of the most unstable mode. Parame-
ters are the same as in Fig. 1. The initial instability is dominated
by undulations with wavelength 2p�a.

there is a discontinuous change in the most unstable wave
number at a specific deposition rate. This discontinuity is
due to a double peak in the s�a� curve: the relative height
of the peaks changes as the deposition rate is changed,
leading to a shift in the maximum growth rate from one
peak to the other.

The eigenfunctions derived in the linear stability
analysis reveal the mechanism for how compositionally
generated stresses destabilize the film relative to the single-
component case. Consider a compressive misfit e , 0
and take ĥ . 0. At a bump on the surface the stress
is relaxed relative to that of a planar film, so the stress
at a bump has a tensile deviation T̂kk from the uniform
state. If B atoms are large (h . 0), for example, then
there is a preferential motion of B atoms to bumps on
the surface (ĉ . 0). As these composition variations are
incorporated into the solid during growth, they result in a
further expansion of the crystal lattice at surface bumps,
increasing the amplitude of the tensile stress perturbation.
The increase in the stress perturbation leads to a positive
feedback through increasing the compositional segrega-
tion. Even without the compositional effects, the stress
nonuniformity is sufficient to drive the surface instability
(as in a single-component film). Here, composition
variations cause an enhancement of the instability in
two ways. First, the composition variations increase the
stress nonuniformity, causing a larger driving force for
the surface instability. Second, the stress nonuniformity
results in the enhanced diffusion of one atomic species
to surface peaks, causing the instability to grow faster.
For a film with compressive misfit, this results in the
preferential motion of large atoms to surface peaks.
Thus, the enhancement of the instability is due to the
feedback of the composition variations on the stress,
causing increased net transport via the usual stress-driven
instability, as well as additional mass transport through
the enhanced motion of large atoms to surface peaks. The
mechanism for destabilization is independent of the choice
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of signs for e and h. This mechanism, which predicts
that large atoms preferentially segregate to peaks if the
misfit is compressive and to valleys if the misfit is tensile,
is consistent with experimental evidence in the GeSi�Si
system [25,26] and in the AlAs�InAs system [27].
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