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Metastability and Nucleation in Capillary Condensation
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This paper is devoted to thermally activated dynamics of capillary condensation. On the basis of a
simple model we identify the critical nucleus involved in the transition mechanism and calculate the
nucleation barrier from which we obtain information on the nucleation time. Close to the condensation
point, the theory predicts extremely large energy barriers leading to strong metastabilities, long time
dependencies, and large hysteresis in agreement with experimental observations in mesoporous media.
The validity of the model is assessed using a numerical simulation of a time-dependent Ginzburg-Landau
model for the confined system.

PACS numbers: 64.60.Qb, 64.70.Fx, 68.10.Jy
Porous materials are involved in many physical, chemi-
cal, or biological processes. Their porosities confer to
these materials the property of being natural reservoirs for
water, oil, or gas. Their adsorption properties are known
to present a variety of behaviors related to the texture of
the porous matrix, which provides an experimental way
to analyze the pore size distribution. Interpretation of ad-
sorption isotherms in these materials commonly invokes
a well known phenomenon, capillary condensation [1,2],
which corresponds to the condensation of liquid bridges
in the pores. More fundamentally, capillary condensation
is a gas-liquid phase transition shifted by confinement. A
basic model of confinement is provided by the slab ge-
ometry, for which the fluid is confined between two paral-
lel planar solid walls. The classical macroscopic theory
based on this model [2] predicts a condensation of the liq-
uid phase, when the substrate-liquid surface tension gSL is
smaller than the substrate-vapor surface tension gSV , be-
low a critical distance Hc between the solid surfaces satis-
fying the Kelvin equation, DrDm � 2�gSV 2 gSL��Hc.
Here, Dr � rL 2 rV is the difference between the bulk
densities of the liquid and the gas phase, Dm � msat 2 m

is the (positive) undersaturation in chemical potential, and
msat is the chemical potential at bulk coexistence. Al-
though the equilibrium properties of this transition have
motivated many experimental [3,4] and theoretical stud-
ies [2,5,6], capillary condensation presents remarkable dy-
namical features which are still to be explained. The most
striking feature is the huge metastability of the coexisting
phases, which contrasts with the bulk liquid-vapor transi-
tion. This behavior manifests itself, for example, in the ex-
istence of hysteresis loops in adsorption isotherms of gases
in mesoporous solids [5], or in well controlled measure-
ments using surface force apparatus techniques [4]. A re-
lated observation concerns the extremely long time scales
measured in the adsorption process, as measured, e.g., in
cement pastes and concretes [7], or in the humidity de-
pendent aging behavior of granular media [8]. A detailed
description of the dynamics providing an estimate of the
condensation time is thus still needed.
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Since capillary condensation is a first order phase transi-
tion, one should be able to identify a critical nucleus and a
corresponding free-energy barrier (away from the spinodal
line [9]). In this Letter we show that, as in the homo-
geneous nucleation case, the shape of the critical nucleus
results from the balance between surface and volume con-
tributions. To test this picture, we shall consider a simpli-
fied model keeping only the main ingredients for capillary
condensation, and compare our results to numerical simu-
lations of the activated dynamics.

In the grand-canonical ensemble the critical nu-
cleus corresponds to a saddle point of the grand
potential. We will consider in this Letter the per-
fect wetting situation gSV � gSL 1 gLV , although a
generalization to the partial wetting case is straight-
forward. The grand potential of a pore partially
filled with liquid may be written [2] V � 2pV VV 2

pLVL 1 gSV ASV 1 gSLASL 1 gLV ALV , where VV (VL)
is the volume of the gas (liquid) phase and ASL, ASV ,
and ALV , respectively, denote the total solid-liquid, solid-
vapor, and liquid-vapor surface area. Our prescription
for the grand potential is macroscopic in nature; i.e., we
shall neglect the H dependencies of the surface tensions.
Using gSV 2 gSL � gLV in the perfect wetting case,
the following expression is obtained for the “excess”
grand potential, DVtot � V 2 VV , with VV the grand
potential of the system filled with the gas phase only:

DVtot � gLV ALV 1 gLV ASL 1 DmDrVL , (1)

where we have used pV 2 pL � DrDm. One expects
the critical nucleus to exhibit rotational invariance, so that
DVtot in Eq. (1) is best parametrized in cylindrical coor-
dinates (see Fig. 1b). In terms of r�z�, the position of the
L-V interface, one obtains

DVtot� DrDm2p
Z H�2

0
dz r2�z�
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FIG. 1. The critical nucleus for capillary condensation in two
dimensions (a), and three dimensions (b). R� represents the
lateral extension of the critical nucleus (see text for details). The
total curvature k of the meniscus is equal to k � 1�Rc � 2�Hc.
Note that, in 3D, k is the sum of the in-plane and “axisymmetric”
(out-of-plane) curvature.

where the index z denotes differentiation. Extremalization
of the grand potential (2) leads to the usual condition of
mechanical equilibrium, the Laplace equation, which re-
lates the local curvature k to the pressure drop according
to gLV k � Dp � DmDr. This condition remains valid
although the nucleus corresponds to a saddle point of the
grand potential.

The main difference with homogeneous nucleation
comes from the pressure drop at the interface: here, the
liquid pressure inside the meniscus is lower than the gas
pressure since m , msat, so that one expects the critical
nucleus to take the form of a liquid bridge between
the solid substrates instead of a sphere as in homoge-
neous nucleation (see Fig. 1b). The previous Laplace
equation is nonlinear and cannot be solved analytically.
From dimensional arguments, however, one expects
DVtot � gLV H2

c f�H�Hc�, with f�x� a dimensionless
function. The latter can be obtained from the numerical
resolution of the Laplace equation, yielding the shape of
the meniscus [10]. Numerical integration of Eq. (2) then
gives the corresponding free-energy barrier. The result for
the energy barrier DVy is plotted in Fig. 2. As can be
seen from the figure, a divergence of DVy is obtained as
the pore width H reaches Hc. When the extension of the
bridge R� � r�H

2 � is large compared to H, the negative
(axisymmetric) contribution to the curvature is negligible
and the L-V profile can be approximated by a semicircular
shape. This allows one to obtain explicit expressions
for the different contributions to DVtot in Eq. (1) as
a function of the extension of the bridge R�, namely,
VL � pR�2H 2

p2

4 R�H2 1
p

6 H3, ASL � 2pR�2, and
ALV � p2R�H 2 pH2. Maximization of DVtot as a
function of R� yields the following expression for the free
energy barrier:

DVy � gLV H2
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which does exhibit a divergence at H � Hc �
2gLV �DrDm.
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FIG. 2. Free energy barrier (in 3D) as a function of the nor-
malized width of the pore, H�Hc. The solid line is computed
by numerical integration of the Laplace equation. The points are
obtained from the analytical expression, Eq. (3).

As shown in Fig. 2, this result is in very good agreement
with the numerical estimate, even at small confinement H.
Physically, an important consequence of the diverging en-
ergy barrier at Hc is that the gas phase becomes extremely
metastable. Thus, for the problem of adsorption of gases
in mesoporous media, one expects extremely long adsorp-
tion time when the gas pressure PV (which fixes Dm) is
such that Hc�PV � is of the order of the typical pore size H̄,
which is indeed observed experimentally [4,7]. Further-
more, this point is corroborated by the existence of large
hysteresis loops in the adsorption of gases in mesoporous
media [5].

If we now consider the more realistic situation where
a long range van der Waals interaction exists between the
substrates and the fluid, both distances H and Hc appear-
ing in Eq. (3) [and Eq. (4) below] have to be modified to
account for the finite thickness � of the wetting films now
condensed on the two surfaces, and for the modification of
the nucleus profile. It can be shown that a 1�z3 potential
can be accounted for provided the bare distance H is re-
placed by H 2 3� (same for Hc) in the analysis presented
above [5,11].

The previous model uses macroscopic concepts (such as
surface tensions) to derive an energy barrier. In the case of
homogeneous nucleation, it has been shown in numerical
simulations that this gives essentially the correct qualitative
behavior [12]. This can be verified using numerical simu-
lations of the activated dynamics. As the latter involve
a huge amount of computer time, data could be obtained
only in 2D. We will therefore restrict the comparison to
this case. We emphasize that this is, however, sufficient to
assess the general validity of macroscopic considerations.

Before turning to the simulations, we quote the theoreti-
cal predictions for the 2D case. The theoretical approach
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follows essentially the same lines as in the 3D case. The
main difference lies in the absence of the azimuthal cur-
vature in the 2D case and the mechanical equilibrium con-
dition thus imposes a circular shape of the liquid-vapor
interface, with a fixed radius of curvature Rc � Hc�2. As
a consequence, the critical meniscus takes the form de-
picted in Fig. 1a corresponding to a liquid bridge with a
vanishingly small lateral extension in e � H�2. The cusp
in the center originates in the assumption of an infinitesi-
mally thin L-V interface in the macroscopic picture. The
corresponding energy barrier (per unit length in the per-
pendicular direction) is then obtained to be

DVy �
4
3

�DmDrgLV �1�2H3�2. (4)

As discussed above, the distance H should be replaced by
H 2 3� in the presence of a 1�z3 confining potential.

Simulations are based on a mesoscopic Landau-
Ginzburg model for the grand potential of the 2D system
confined between two walls. In terms of the local density
r�r�, we write the excess part of the grand potential
Vex � V 1 PsatV , where Psat is the pressure of the
system at coexistence, as

Vex �
Z

dr

Ω
m
2
j=rj2 1 W�r� 1 �Dm 1 Vext�z��r

æ
.

(5)

In this equation, m is a phenomenological parameter;
Vext�z� is the confining external potential, which we took
for each wall as Vext�z� � 2e�s��Dz 1 s��3, with Dz
the distance to the corresponding wall; e and s have
the dimensions of an energy and a distance. It must be
noted that this potential is not the actual van der Waals
potential in 2D, but this choice will allow us to test the
H 2 3� prescription. W�r� can be interpreted as the
negative of the excess pressure msatr 2 f�r� 2 Psat,
with f�r� the bulk free-energy density [13]. As usual,
we assume a phenomenological double well form for
W�r�: W�r� � a�r 2 rV �2�r 2 rL�2, where a is a
phenomenological parameter [14]. The system is then
driven by a nonconserved Langevin equation for r,

≠r

≠t
� 2G

dVex

dr
1 h�r , t� , (6)

where G is a phenomenological friction coefficient and
h is a Gaussian noise field related to G through the
fluctuation-dissipation relationship [15]. An equivalent
model has been successfully used for the (bulk) classic
nucleation problem [16]. We solved (6) by numerical
integration using standard methods, identical to those of
Ref. [16]. The units of energy and length are such that
s � e � 1. Time is in units of t0 � �Ges2�21 with
G �

1
3 . In these units, we took m � 1.66, a � 3.33,

rL � 1, and rV � 0.1. Typical values of the chemical
potential and temperature are Dm � 0.016, T � 0.06
(which is roughly half the critical temperature in this
model). Periodic boundary conditions with periodicity Lx
FIG. 3. Averaged density as a function of time t (in units of
t0) for a few realizations of the noise (H � 13, Dm � 0.016,
and T � 0.07). The dashed line is the average over all the
realizations, r̄�t�.

were applied in the lateral direction. Typically Lx � 2H
was used, but we have checked that increasing Lx up to
20H does not affect the results for the activation dynamics.
We emphasize that this lack of sensitivity is not obvious
since it is known that the amplitude of capillary waves
increases with the lateral dimension of the system for free
interfaces [2]. In our case, however, the long-range effects
of the fluctuations of the liquid film are expected to be
screened due to the presence of the external potential.
Moreover, as predicted by the model, nucleation should
occur via the excitation of localized fluctuations. The
observed insensitivity of the results with respect to finite
size effects is then an encouraging feature for the model
presented above.

The simulated system is initially a gas state filling the
whole pore, and its evolution is described by Eq. (6). A

FIG. 4. Logarithm of condensation time as a function of the
inverse temperature (Dm � 0.016, H � 13). The dashed line
is a least-squares fit of the data.
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FIG. 5. Logarithm of condensation time as a function of the
“effective” width of the slab H 2 3� for fixed Dm � 0.016.
The dashed line is the theoretical prediction ln�t� � ln�t0� 1
a�H 2 3��3�2. The two parameters ln�t0� and a have been
obtained from a least-squares fit of the data in a ln�t� versus
�H 2 3��3�2 plot.

typical evolution of the mean density in the slit r�t� is
plotted in Fig. 3. An average over different realizations
(from 10 to 30) is next performed to get an averaged time-
dependent density r̄�t�. As expected [5], due to the long-
range nature of the external potential a thick liquid film
of thickness � rapidly forms on both walls on a short time
scale t1 (� � 3.8s and t1 � 5t0 in our case). In a sec-
ond stage, fluctuations of the interfaces around their mean
value � induce after a while a sudden coalescence of the
films (see Fig. 3). This second process has a characteris-
tic time t. It is numerically convenient to define the to-
tal coalescence time, t1 1 t, as the time for the average
density in the slab between the two wetting films to reach
�rV 1 rL��2 [16], which corresponds in our case to the
condition r̄�t 1 t1� � 0.8. The physical results do not
depend anyway on the precise definition of t.

In Fig. 4, we plot the variation of ln�t� as a function
of the inverse temperature 1�T . As expected, far from the
spinodal (i.e., for large enough H, H * 3�), t is found
to obey an Arrhenius law t � t0 exp�DVy�kBT �, where
DVy is identified as the energy barrier for nucleation.

The H dependence (Dm being fixed) is plotted in
Fig. 5. From Eq. (4), one expects ln�t� � ln�t0� 1

a�H 2 3��3�2, with a � 4�3�DmDrgLV �1�2�kT . As
seen in Fig. 5, a good agreement with this theoretical
prediction is found. The prefactor a can be independently
estimated from the data plotted in Figs. 4 or 5, yielding
a � 0.67 (Fig. 4) and a � 0.68 (Fig. 5), while the theo-
retical prediction gives a � 1.03 (where the liquid-vapor
surface tension—at finite temperature T � 0.06—has
been computed from independent Monte Carlo simulations
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of the model, yielding gLV � 0.8). The macroscopic
theory thus gives a correct qualitative picture and only a
semiquantitative agreement. This slight overestimation of
the macroscopic nucleation theory has also been observed
in the homogeneous nucleation case [12].

The simulations thus show that, although the system
is strongly confined, the macroscopic picture is valid to
describe the critical nucleus for capillary condensation.
Beyond the obtained results, many questions remain to
be discussed, one of crucial importance being the role of
roughness in the condensation process, in order to discuss
adsorption kinetics in porous or granular media.
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