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Devil’s Staircase–Type Faceting of a Cubic Lyotropic Liquid Crystal
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The faceting of monocrystals of the lyotropic cubic liquid crystals in equilibrium with a humid at-
mosphere is observed. Experiments reveal the presence of more than 60 different types of facets on
the surface of a spherical crystal of radius R � 1 mm. The devil’s staircase type of faceting has been
predicted theoretically when the interaction between steps on the crystal surface is repulsive.

PACS numbers: 61.30.–v, 64.70.Md, 82.65.Dp
One of the most fascinating theoretical aspects of crystal
faceting is the “devil’s staircase” phenomenon, i.e., the
appearance of facets with arbitrarily high Miller indices
[1–4]. Experimentally, in all systems investigated to date,
such as, for example, metals (Pb [5] or Au [6]), helium [7],
or blue phase crystals [8], only a few facets with low Miller
indices have been observed. In the case of the lyotropic
cubic crystals, the faceting of air bubbles included in large
monocrystals was described [9]. Considered as “negative
crystals,” such bubbles have shown only one family of
facets of the �211� type.

Here, we report on the shape of dropletlike lyotropic
monocrystals in equilibrium with water vapor of controlled
pressure. We show that, unlike the air bubbles, such
dropletlike crystals display a surprisingly large variety of
facets suggesting a devil’s staircase–type mechanism of
faceting. We interpret this result as being due to the coinci-
dence of quite large surface tension and reticular distance
with an exceptionally low elastic modulus.

The experimental setup is depicted schematically in
Fig. 1. Its main part is a tight cell, developed for studying
free standing films of lyotropic liquid crystals, in which
the humidity h (defined as the ratio of the partial pressure
of water vapor to its saturating pressure) is controlled
with an accuracy of 0.1% between 0 and 100%. The
principle of the humidity control is the same as that used
previously in studies of anchoring transitions [10]: two
fluxes of nitrogen (or helium), one dry �Fd� and the other
one saturated with water vapor �Fw�, are regulated using
gas flow controllers, mixed in variable proportions and
injected at a typical rate of 100 ml�min into the cell. The
temperature of both fluxes and of the cell is regulated
between room temperature and 100 ±C. Glass windows
allow observation with a microscope.

Experiments were performed in the cubic phase of the
binary mixture of the nonionic surfactant C12EO6 (hexa-
ethyleneglycol mono n-dodecyl ether) with water [11].
This system has been extensively studied in the past [12],
and its phase diagram temperature vs concentration is well
known. In particular, it has been well established that
the direct cubic phase V1, present at surfactant concen-
tration between 64.3 and 70.2 wt % at T � 20 ±C, has
the Ia3d symmetry (space group Q230) and can be rep-
0031-9007�00�84(11)�2409(4)$15.00
resented as two identical bicontinuous interwoven surfac-
tant labyrinths separated by a water layer described by
the Schoen’s gyroid infinite periodic minimal surface [13].
The size of the cubic unit cell is 118 Å. The cubic phase
in this system is known for its ability to grow easily very
large monocrystals [14].

A small drop of the pure surfactant is deposited on a
glass cover slide which is treated with an antiwetting solu-
tion in order to obtain a drop with a large range of surface
directions. In practice, the surfactant drop spreads a little
on the glass surface and forms a spherical cup whose di-
ameter and contact angle at the base are D � 1 mm and
u � 30±, respectively (see Fig. 1). Accordingly, the ra-
dius of curvature R of the drop is about 1 mm. In the
humid atmosphere of the cell, the drop absorbs water
until an equilibrium between the solution and the water
vapor is reached. The complete T vs h phase diagram
of the C12EO6�water system will be reported elsewhere.
It is sufficient to indicate here that the phase sequence
is L2-85%-La-95%-V1-98%-H1-100%-L2 at T � 20 ±C.
Thus, the transition from the L2 (inverted micellar) phase
to the La (lamellar) phase takes place at h � 85% (with-
out any metastability, since the lamellar phase wets the
micellar phase) and the drop usually keeps approximately
its spherical shape. The transition from the lamellar to
the cubic phase V1 is significantly metastable and occurs

FIG. 1. Experimental setup.
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for supersaturations Dh � 1%. One observes a rapid den-
dritic growth of the cubic phase nucleated on dust par-
ticles. Whenever the transition starts from one germ only,
a monocrystal fills the drop. Immediately after the phase
transition, the surface of the drop is very irregular. After
1 h annealing at constant T and h, the drop surface gets
smoother and facets start to appear on it. One or two days
of annealing are necessary to obtain the faceting shown
in Figs. 2 and Fig. 3. In these photographs, facets coexist
with rough parts of the crystal surface. These constella-
tions of facets stay stable as long as temperature and hu-
midity are maintained constant.

The images were obtained in transmission mode. The
best contrast between facets and rough parts of the crystal
surface was achieved with the microscope set slightly out
of focus and with illumination by a slightly diverging light
beam making an angle c with the optical axis (Fig. 1). In
these conditions, only a small portion of the drop surface
appears as illuminated because a low aperture objective
�35, NA � 0.13� was used for observation.

The most striking feature of the photographs (Figs. 2
and 3) is an astonishing variety of facets with different

FIG. 2. Views of a faceted monocrystal: (a) in the vicinity of
the (222) facet; (b) in the area between (220), (211), and (121)
facets. Note the presence of tracks, made of facets with parallel
edges, connecting the (211) and (121) facets in (a) and the (211)
and (220) facets in (b).
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Miller indices. All these facets form a highly symmetric
pattern very similar to Laue diagrams. In order to identify
the Miller indices of all facets, a polar diagram in which
the positions of all �hkl� directions with h, k, l � 0, . . . , 12
are indicated by circles on a sphere was used (Fig. 4). Fig-
ure 4 shows one elementary patch. The whole crystal habit
is composed of 48 identical elementary patches, related by
the symmetry Oh of the cubic crystal. It is thus suffi-
cient to index one elementary patch as shown in Fig. 4. In
this heuristic diagram, the diameters of circles have been
set proportional to dhkl � a��h2 1 k2 1 l2�1�2, since the
occurrence and relative extension of facets is directly re-
lated to the interplanar distances dhkl according to the ele-
mentary Donnay-Harker theory [15]. For the same reason,
the general crystallographic selection rules for the Ia3d
symmetry were applied, so that only those facets were
drawn for which the four following relations are satisfied.
(a) hkl: h 1 k 1 l � 2n; (b) hk0: h, k � 2n; (c) hhl:
2h 1 l � 4n; (d) h00: h � 4n, where n is an integer. Fi-
nally, the circles were drawn as black or white when the
sum h2 1 k2 1 l2 is smaller or larger than 170, respec-
tively. The choice of this cutoff value is empirical and
results from our observations.

The observed facets were identified by comparing pho-
tographs with corresponding portions of the elementary
patch (Figs. 2 and 3) and measuring the slopes of sev-
eral facets by interferometry [16]. As a result, about 60
facets with different Miller indices have been identified.
The relative sizes of observed facets correspond roughly
to the model based on the reticular distances dhkl only.
Nevertheless, there are some clear discrepancies. For ex-
ample, according to this model, the (321) facet should
be larger than the (431) one, whereas the inverse ob-
viously occurs in Fig. 2b. In fact, this discrepancy is
not surprising: besides the interreticular spacing dhkl , the
Donnay-Harker-type models involve an effective potential

FIG. 3. View of a faceted monocrystal in the area between the
(004) and (112) facets. Note that the sizes of the (206) and (026)
facets are different.
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FIG. 4. Theoretical scheme with Miller indices of facets ob-
served experimentally.

of periodicity dhkl which fixes the minima of the surface
energy at discrete levels separated by the distance dhkl [17].
In lyotropic cubic crystals, the depth of these minima must
be related to the distribution r�r� of the surfactant inside
the crystal or more precisely to the amplitude rhkl of its
Fourier component in the direction �hkl�. This last quan-
tity is the structure factor which is directly measured in
x-ray diffraction experiments. In the case considered here
of the (321) and (431) facets, it is remarkable that the 431
Bragg peak has been found much more intense than the
321 one, both in the C12EO6�water mixture [12] and in
other lyotropic systems with the same cubic structure [18],
as well as in theoretical computations of the structure fac-
tor of a gyroid infinite periodic minimal surface decorated
with a film of water [19].

Another remarkable feature of the observed faceting pat-
tern is the presence of “tracks” in which many facets with
parallel edges and different widths are packed. Two differ-
ent types of tracks are observed easily: one connecting
different �211� facets [see Fig. 2(a)], and the other one
connecting �211� to �220� facets [see Fig. 2(b)]. Obvi-
ously, 2D devil’s staircase models of faceting, based on
the interaction between parallel steps, come to mind. If
the vectors a � �2, 1, 1��6 and b � �1, 2, 1��6 are taken
as a basis �a, b� of a 2D crystal (a section of the 3D crystal
by a plane containing the track), then all �hkl� facets on
the (211)-(121) track can be indexed as �mn� facets in this
2D basis according to

�hkl� � m�211� 1 n�121� . (1)

For example, the (332) facet in the middle of the track
corresponds to the (11) facet in the 2D crystal, the (543)
facet to (21), (754) to (31), (965) to (41), or (875) to (32),
etc. As shown for the first time by Landau [20], at T � 0
any �mn� facet can be created by an appropriate periodic
arrangement of steps commensurate with the crystal lattice,
and made stable by a repulsive interaction between steps.
At T � 0, the only limit for realizing an �mn� facet is
geometrical and is due to the finite size R of the crystal.
According to Schulz [1], for a repulsive potential U 	
p2d, where p � m�n is the average distance between
steps (in units of d211), the width of the �mn� facet on
the crystal surface is of the order of Rp2d21. This width
obviously cannot be smaller than the distance between two
steps, which is pd, so that one gets

pmax �

µ
R
d

∂1�d12

. (2)

As shown by Marchenko and Parshin [21], the potential
energy of the elastic interaction per unit length between
two steps at a distance x � pd on a crystal surface is given
by the d � 2 law:

U�p� �
2�1 2 s2�g2

pE
1

p2 , (3)

where g is the surface tension of the crystal surface on
which steps appear, E is the Hook modulus, and s the
Poisson ratio of the crystal. As a consequence of this
d � 2 law, for R � 0.1 cm and d � 5 3 1027 cm, pmax
must be less than 30. Let’s notice that in the tracks
visible in Fig. 2, parallel edges of facets have roughly the
same length. This feature has been predicted at T � 0 by
Burkov [3] within a model of a simple cubic crystal with
atoms interacting via a r2g potential (with g . 4).

At T fi 0, this theoretical limit for p cannot be reached
because thermal fluctuations of steps on facets with large
Miller indices make them rough. These fluctuations imply
the presence of kinks on steps, so that the third dimension
must be taken into account and the �mn� facet of the 2D
model must be seen as the �mn0� facet in a 3D model.
The amplitude of fluctuations depends on the strength of
the elastic repulsion between steps. On the �mn0� facet,
where the average distance between steps is pd, Eq. (3)
gives a typical energy per unit length g2�E, so that g2d�E
is the energy that has to be compared with kT . According
to Schulz [1], the roughening temperature Tc for the �mn0�
facet is given by

kTceE0�kTc �
1
4

d2U�p�
dp2 pd , (4)

where E0 is the energy of a kink, which gives, if E0 is
small compared to kT ,

kTc �
g2d
E

1
p3 . (5)

As expected, the energy g2d�E is the pertinent ther-
modynamic quantity that has to be considered at finite T .
The surface tension g � 25 dyn�cm of the �211� crystal
surface has been estimated from the frequency of vibra-
tion of free-standing films [16]. The shear elastic modulus
E � 107 erg�cm3 has been estimated from the frequency
of vibration of the bulk cubic phase contained in a cylin-
drical test tube [22]. When compared to other systems,
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cubic lyotropic liquid crystals appear now to be excep-
tional because a quite large value of the surface tension
coincides with a relatively low elastic modulus. As a con-
sequence, the characteristic energy g2d�E is of the order
of 3 3 10211 erg. This is much larger than the thermal
energy kT (�10214 erg at 300 K). Thus, the maximum p
value estimated from Eq. (5) is pmax�300 K� � 14. Al-
though very crude, this argument may explain why so
many facets with different Miller indices occur here.

Note that in blue phase I monocrystals, the crystallite
size R was about 200 mm and the interplanar distance d
about 0.2 mm, so that from Eq. (2) one gets pmax of the
order of 5. In other words, on such small crystals with so
high steps, there is simply no space for forming facets with
large Miller indices. The case of the faceted air bubbles
seems more puzzling. The most important difference be-
tween the droplets considered here and the air bubbles is
their long term stability. The pressure must be larger
inside a bubble of radius R than outside the crystal by the
amount Dp � g�R. Since the cubic phase is not com-
pletely impermeable to the gas, the bubble will deflate due
to diffusion of the gas through the crystal. As a conse-
quence, the observed bubble shapes may not correspond
to the equilibrium state.

In the present case, the observed shapes are certainly
not at equilibrium either. Indeed, some facets from the
same �hkl� family do not have the same extension on the
whole monocrystal, even after annealing a few days at
constant T and h. For example, in Fig. 3, the (206) facet is
larger than the equivalent (026) one. Moreover, the relative
surface areas of facets and rough parts depend on humidity;
after a small increase in humidity, all facets expand until
rough parts shrink to a system of edges and vertices. A
further increase in humidity results in the expansion of
principal facets (with small Miller indices, such as �211�
or �220�) and the corresponding disappearance of facets
with larger Miller indices. Both effects are similar to a
crystal growth process in which new atoms are added first
to rough parts of the crystal surface and, subsequently, to
the steps and kinks forming vicinal facets. In the present
case, these processes must be understood as being due to an
increase of the number of cubic unit cells contained in the
drop. When the cubic crystal forms, surfactant molecules
are distributed in unit cells. If the number of surfactant
molecules per unit cell ns depends on the humidity h,
then a change in humidity must result in a change of the
number of unit cells in the crystal since the total amount of
surfactant is fixed. If ns decreases, new unit cells must be
created. The most appropriate locations for these new unit
cells are edges of the crystal facets, so that facets should
expand. Thus, the observed effect may reflect a decrease
of the number ns of surfactant molecules per unit cell upon
hydration of the crystal.

In conclusion, we have reported here the first observa-
tion of a devil’s staircase– type faceting predicted theoreti-
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cally in the framework of models describing vicinal facets
as periodic systems of steps interacting via an elastic re-
pulsion. We have pointed out that this interaction is much
larger in cubic lyotropic liquid crystals than in other sys-
tems because large surface tension and unit cell dimension
coincide with a small elastic modulus. For this reason,
vicinal facets with large Miller indices, on which steps are
far apart, do not melt at room temperature.

The experimental device was built by V. Klein with
the assistance of B. Ranchin, who are gratefully acknowl-
edged. This work benefited from fruitful discussions with
Philippe Nozières and Heinz Schulz.
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