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Destabilization of the m 5 1 Diocotron Mode in Non-neutral Plasmas

John M. Finn* and Diego del-Castillo-Negrete
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

Daniel C. Barnes
Applied Theoretical and Computational Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

(Received 17 May 1999)

The theory for a Penning-Malmberg trap predicts m � 1 diocotron stability. However, experiments
with hollow profiles show robust exponential growth. We propose a new mechanism of destabilization of
this mode, involving parallel compression due to end curvature. The results are in good agreement with
the experiments. The resulting modified drift-Poisson equations are analogous to the geophysical shallow
water equations, and conservation of line integrated density corresponds to that of potential vorticity.
This analogy predicts Rossby waves in non-neutral plasmas and an m � 1 instability in fluids.

PACS numbers: 52.25.Wz, 47.20.Cq, 47.20.Ft, 52.35.–g
Diocotron instabilities in magnetically confined
non-neutral plasmas (e.g., in Penning-Malmberg traps
[1]) are E 3 B drift modes which are analogous to shear
flow instabilities in fluids. According to linear theory
[2,3], modes with m . 1 can be unstable for hollow
(nonmonotonic) density profiles, but for m � 1 there are
no unstable diocotron modes. However, experiments on a
Penning-Malmberg trap (see Fig. 1) confining electrons
with a hollow density profile show a robust exponential
m � 1 instability [4].

The theory of diocotron modes is based on the drift-
Poisson model [3], which is valid for low frequency and
for low density. This system consists of the continuity
equation with the velocity given by the E 3 B drift and
the potential obtained from the Poisson equation, i.e.,
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Dt

� 0 , u� �
ẑ 3 =f

B0
, =2

�f � 4pen ,

(1)

where D�Dt � ≠�≠t 1 u� ? =, and 2e is the electron
charge. Because B0 is uniform, the diamagnetic drift
uD � ẑ 3 =P�neB0 makes no contribution in the con-
tinuity equation, i.e., = ? �nuD� � 0. There have been
several attempts to explain the m � 1 instability observed
in the experiments [4]. Smith and Rosenbluth [5] have
used (1) to show algebraic growth, f �

p
t, related to

phase mixing at the end point of the continuum, where the
E 3 B rotation velocity V�r� is maximum. This growth is
inconsistent with the exponential growth measured in the
experiment. Smith [6] has shown that a modification to
(1) can lead to exponential growth for m � 1. However,
because of the phenomenological nature of the model, it
has not been possible to compare these results with the ex-
periments. In Refs. [7,8] it was shown that finite Larmor
radius effects can also lead to instability, but with growth
rates smaller than those observed in the experiments by
several orders of magnitude.

Here we resolve this discrepancy between theory and
experiment in terms of the modified drift-Poisson model
0031-9007�00�84(11)�2401(4)$15.00
of Ref. [9]. This model is based on the theoretical
observation that in general the ends of a plasma confined
in a Penning-Malmberg trap are curved. In Fig. 2 we
show contours of f�r, z� 2 f0�r�, where f0�r� is the
potential in the central Debye shielded region. Equi-
libria with uniform temperature T are solutions to the
equation =

2
�f � 4pen0�r� exp�e�f 2 f0��T� with

r21�d�dr� �rdf0�dr� � 4pen0�r�. A typical particle
reflects axially, where e�f�r, z� 2 f0�r�� � 2T . Equi-
librium computations as in Refs. [10–12] show that the
length decreases with r , and this effect is stronger for
large f0�r � 0��V , where V is the end-cap potential. For
typical values of f0�r � 0��V the equilibrium half length
L0�r� of the plasma can be parametrized by

L0�r� � L0�0� �1 2 kr2� , (2)

with k typically positive and L0�0� � Lc (cf. Fig. 1).
This description is an idealization of zero Debye length, in
which all particles are assumed to reflect at z � L0�r�, and
n and f are independent of z for 2L0�r� , z , L0�r�.
This idealization neglects phenomena associated with
axial thermal motion [13,14], effects which are important
on a much longer time scale than those considered here.
The region jzj . L0�r� is taken to be vacuum.

FIG. 1. Schematic diagram of the cylindrical plasma confine-
ment device. The middle cylinder at r � rw has length Lc and
is grounded. The potential at the end caps is 2V . From Ref. [9].
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FIG. 2. Potential difference f�r , z� 2 f0�r�, obtained for the
density profile in (6) with m � 3, f0�0��V � 0.75. The dashed
line shows the plasma radius rp , with L0

0�r� , 0 for r , rp .
From Ref. [9].

The modified drift-Poisson equations are de-
rived by integrating in z the continuity equation
including parallel compression ≠�nuz��≠z over
2L�r, u, t� , z , L�r , u, t�. This yields Dn�Dt 1

n�uz�L� 2 uz�2L���2L � 0, and using the relations
uz�r , u, L� � �D�Dt�L, uz�r , u, 2L� � 2�D�Dt�L we
find

D
Dt

�nL� � 0 . (3)

The quantity nL is the line integrated density, and
Eq. (3) expresses charge conservation of plasma columns
aligned with B. Because the relevant quantities are
independent of z for 2L , z , L, the Poisson
equation is as in Eq. (1). In general we can write
L�r , u, t� � L0�r� 1 L̃�f�r, u, t� 2 f0�r��, where L̃ is
obtained by coupling the plasma to the vacuum. Using
Poisson’s equation we can write Eq. (3) as
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where prime denotes d�dr . Parallel compression and ex-
pansion enter in Eq. (4) in the last term and correspond to
changes in the length of plasma columns aligned with B.
There is a conducting wall at r � rw , and all quantities are
in dimensionless form with lengths scaled to the wall ra-
dius rw , velocities to v2

pe�Vce, and potential to 4pner2
w ,

where n is the average density. Equation (4) with L̃ � 0 is
analogous to the shallow water equations [15] of geophysi-
cal fluid dynamics, and the line integrated density nL is the
analog of the potential vorticity [16]. The first term in
the brackets, which is due to curvature, is the analog of the
term in the b-plane approximation [15] due to topography
variation or to latitude variation of the Coriolis force.

Linearizing Eq. (4) and assuming normal mode depen-
dence f̃ � eimu2ivt , we obtain

=2
�f̃ 1

m�n0L0�0

r�v 2 mV�r��L0
f̃ 1 n0

L̃�f̃�
L0

� 0 , (5)

where V�r� is the equilibrium rotation velocity. This equa-
tion becomes the Rayleigh equation when L0

0 and L̃ are
2402
zero. The second term on the left is responsible for Rossby
waves in non-neutral plasmas [16].

Consider density profiles of the form

n0�r� � n0�0� �1 2 �r�rp�2�2�1 1 �m 1 2� �r�rp�2�
(6)

for 0 , r # rp and zero otherwise, as used in
Refs. [9,17]. Here, rp is the plasma radius, and m

is the hollowness parameter. For m . 0 the maximum of
n0�r� is at r � rn . 0, and the maximum Vmax of V�r�
is at r � rV , with 0 , rn , rV .

Ignoring free boundary effects �L̃ � 0�, and using
Eq. (2), Eq. (5) takes the form

�v 2 mV�=2
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(7)

As discussed in Refs. [5,6], for k � 0 there is a weak
neutral mode

f̃0�r� � r�v 2 V�r��Q�rV 2 r� , (8)

where Q�rV 2 r� is a step function displacement, with
v � Vmax, the end point of the continuum.

Figure 3 shows the growth rate g for k . 0 obtained
using Eqs. (7) and (6) for m � 3, rp � 0.59. The growth
rate g scales as k2�3 for k small, similar to the scaling
obtained in [6]. The fractional power and zero instability
threshold in k are associated with a boundary layer near
r � rV related to the singularity in the neutral mode of
Eq. (8) there. The real frequency vr decreases slowly
from Vmax as k is increased. The potential for k small
is similar to that of Eq. (8), but it is smooth, has a zero
just inside r � rV , and goes to zero rapidly in the region
r . rV . For k , 0 the mode remains stable (again with f̃

smooth but with no zero in the interval 0 , r , rV) with
pure real frequency v � vr that increases above Vmax as
jkj increases. That is, the stable mode for k , 0 becomes
nonresonant. The physical mechanism for this instability
involves the fact that vr decreases as k increases. This is
because for m � 1 and k . 0, compression and expansion

FIG. 3. Dependence of the growth rate g on k for m � 3
on a log-log scale, showing the dependence g � k2�3. From
Ref. [9].
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parallel to B creates a perturbed dipole of charge. In the
frame rotating with vr , the additional E 3 B drift due to
this dipole is in the opposite direction to vr , decreasing
vr . (This is essentially the physical mechanism of Rossby
wave propagation in Penning traps [16].) This frequency
down-shift couples the marginal mode of Eq. (8) to the
plasma, and with the hollowness produces instability.

Onset for the instability is for both m and k equal
to zero. Specifically, for m ! 0, there are scaling
properties due to the localization of the mode to
r � rn � rV similar to that in Eq. (8). For m small
we find n0�r� � 1 1 C1r2 2 C2r4 1 O�m3� with
r � r�rp , where C1 � O�m� and C2 � O�1�, and simi-
larly for V�r�. For Eq. (6), C1 � m, C2 � 23. Thus,
rn � rV � m1�2. We consider Eq. (7) for r of order
m1�2. Defining dv � v 2 Vmax, we find from Eq. (7)
for r � m1�2

=2
�f̃ 1

d�dr��m 2 3r2�r2 2 kr2
pr2�

r�dv 2 �m 2 2r2�r2�4�
f̃ � 0 . (9)

If we assume dv � m2 and k � m, we find that the
terms of Eq. (9) are all of the order of m2. This implies
the scaling

dv � m2G�k�m�, f̃ � F�k�m, r�
p

m � . (10)

In Fig. 4 we show g�m2 as a function of k�m obtained
by integrating Eq. (7) for five values of m. In agreement
with Eq. (10), the curves converge to a single universal
curve, with deviation of the order of m. The scaling pre-
dicted by Eq. (10) is accurate even for fairly large m and
k. As discussed, the results in Fig. 3 show that for k ! 0,
g � k2�3. From Fig. 4 we observe further that the mar-
ginal stability point to the right satisfies k�m � 1.55, with
an error apparently smaller than order m.

Equation (7) is a modified Rayleigh equation, with
�n0L0�0�L0 taking the place of n0

0. Accordingly, the usual
Rayleigh criterion [3] is easily generalized to a modified
Rayleigh criterion: A sufficient condition for stability is
that the line integrated density n0L0 be monotonic. Since
L0�r� [cf. Eq. (2)] is monotonically decreasing function,
it follows that this condition is satisfied for k sufficiently
large. Note that the modified Rayleigh criterion applies to
all modes with m fi 0. Results with jmj . 1 are shown
in Ref. [18].

For the free boundary case, the general equation (5) must
be used. The perturbation L̃ is computed by matching to
the vacuum region for jzj . L�r , u, t�. The continuity of
the normal as well as the tangential components of the
electric field at z � L0�r� 1 L̃�f̃�

≠

≠z
�fe

0 1 f̃e�jz�L0�r�1L̃�f̃i� � 0 (11)

implies to first order

L̃�f̃i�
≠2f
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0

≠z2

Ç
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� 2
≠f̃e

≠z

Ç
z�L0�r�

, (12)

where e and i refer to exterior and interior. An alternate
derivation of the matching conditions based on the per-
FIG. 4. Scaled growth rate g�m2 as a function of k�m, for
m � 0.05 (top curve), 0.10, 0.15, 0.20, and 0.25 (bottom curve),
showing the self-similar form of Eq. (10). From Ref. [9].

turbed density at the ends is shown in [18]. To express ≠zf̃

at z � L0�r� in terms of f̃ at z � L0�r� involves solving
Laplace’s equation for L0�r� , z , L0�0� 1 b, where b
is the length of the end cap. (See Fig. 1.) However, for
b ø rw � 1, assuming L0�0� 2 L0�r� � O�b�, and with
Neumann boundary conditions at z � L0�0� 1 b as an ap-
proximate open boundary condition, there is a differential
approximation [9]:

≠zf̃
e � bf�r�=2

�f̃i, (13)

where f�r� � 1 1 �L0�0� 2 L0�r���b. Substituting
Eq. (13) in Eq. (5) we obtain

�v 2 mV�=2
�f̃ 1

m�n0
0 2 2krn0��1 2 kr2��
r�1 1 h 1 kr2�

f̃ � 0 ,

(14)

where h � b�L0�0�. Figure 5 shows the growth rate g as
a function of h for m � 3 and for various values of k. The
differential approximation in Eq. (13) is valid for k�h �
1 or smaller. There is a qualitative similarity between the

FIG. 5. Dependence of the growth rate g on h according to
Eq. (14), for seven equally spaced values of k between 0 and
0.35 for m � 3. From Ref. [9].
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FIG. 6. Modulus of perturbed density jñj as a function of ra-
dius for h � 0 and k1 � 0.002, k2 � 0.33, and k3 � 0.67.
From Ref. [9].

behavior as a function of h and as a function of k. In
particular, g � h2�3 for k � 0, h . 0, and the mode is
stable and nonresonant �vr . Vmax� for k � 0, h , 0.

The parameters of the experiment [4] are
n � 5 3 106 cm23, B0 � 375 G, V � 250 V, and
central potential f0�r � 0, z � 0� � 218 V. The tem-
perature is T � 1.2 eV, and the plasma radius rp is
2 cm. The total length of the trap �2L0�0� � 30 cm,
and the conducting wall is at rw � 3.8 cm. In the
experiment, the real frequency of the instability vr is
very close to the maximum value of the E 3 B rotation
frequency, Vmax � 9 3 105 sec21, and the growth rate
is g � 2.3 3 104 sec21, giving g�vr � 0.025. To
compare our model with the experiment, we fixed m � 3
�nmax�n0�0� � 1.28� in the results of Fig. 5.

For the results shown in Fig. 5, vr is just below
Vmax � 0.6, as discussed, and for k � 0.25, h � 0.15
we find g � 1.0 3 1022, giving g�vr � 0.017, in
reasonable agreement with the experiment. Equilibrium
results show that k � 0.25 is consistent with the above
experimental parameters. The value h � 0.15 was chosen
to satisfy the condition b � hL0�0� , 1. Results using a
Green’s function approach for b � 1 are left for a future
publication. For k � 0.25, h � 0.15, m � 4 [the latter
giving nmax�n0�0� � 1.41], we obtain g � 1.2 3 1022,
giving g�vr � 0.020. The self-shielding nature of the
mode observed in the experiment is also in agreement with
the theory: f̃ is small for r . rV , similar to the neutral
mode of Eq. (8), for small k, h. The perturbed density ñ
is shown in Fig. 6 for h � 0 and three values of k. The
density profiles shown are similar to the profiles in the
experiment [4]. Finally, equilibrium results show that k

increases as the length of the plasma decreases, reaching
large values k � 1 for which the mode is stabilized for
L0�0��rw � 1. This result is consistent with experimental
results showing stability for the m � 1 mode for short
2404
enough plasmas [19]. More recent experiments [20]
show agreement with the theory over a wider range of
parameters, and show specifically the decrease of vr and
g � k2�3 scaling for small k . 0, the stabilization for
larger k, and the stable mode with positive vr for k , 0.

In summary, we have found good agreement between
our theoretical results and the experimental results [4,20],
specifically concerning the growth rate and frequency
of the mode, the mode structure, and stabilization for
short plasmas. Furthermore, the analogy with geophysical
fluid dynamics suggests the existence of Rossby waves in
Penning-Malmberg traps [16] and an m � 1 instability in
rotating fluids with sloping bottom and hollow vorticity
profiles [18].
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