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Universality and Saturation of Intermittency in Passive Scalar Turbulence

A. Celani,1,2 A. Lanotte,1 A. Mazzino,3,4 and M. Vergassola1

1CNRS, Observatoire de la Côte d’Azur, B.P. 4229, 06304 Nice Cedex 4, France
2Dipartimento di Fisica Generale, Università di Torino, and INFM Unità di Torino Università, I-10126 Torino, Italy

3INFM–Dipartimento di Fisica, Università di Genova, Via Dodecaneso, 33, I-16142 Genova, Italy
4The Niels Bohr Institute, Blegsdamvej, 17, Copenhagen, Denmark

(Received 29 September 1999)

The statistical properties of a scalar field advected by the nonintermittent Navier-Stokes flow arising
from a two-dimensional inverse energy cascade are investigated. The universality properties of the scalar
field are probed by comparing the results obtained with two types of injection mechanisms. Scaling
properties are shown to be universal, even though anisotropies injected at large scales persist down to the
smallest scales and local isotropy is not fully restored. Scalar statistics is strongly intermittent and scaling
exponents saturate to a constant for sufficiently high orders. This is observed also for the advection by
a velocity field rapidly changing in time, pointing to the genericity of the phenomenon.

PACS numbers: 47.10.+g, 05.40.–a, 47.27.– i
Ramp-and-cliff structures are a characteristic feature of
fields, like dye concentration or temperature, obeying the
passive scalar equation (see, e.g., Refs. [1,2])

≠tT �r, t� 1 y�r, t� ? =T �r, t� � kDT �r, t� , (1)

i.e., advected by the velocity y and smeared out by the
molecular diffusivity k. Scalar gradients tend indeed to
concentrate in sharp fronts separated by large regions of
weak gradients (see Fig. 1). The experimental evidence for
ramps and cliffs is long standing and massive [3–6]. Fur-
thermore, numerical simulations indicate that scalar struc-
tures are not mere footprints of those in y and appear
also for synthetic flow [7,8]. The presence of ramp-and-
cliff structures raises some important issues about scalar
turbulence and its intermittency properties. Following Kol-
mogorov’s 1941 theory, it is indeed usually assumed that
turbulence restores universality, i.e., independence of the
large-scale injection mechanisms, and isotropy at small
scales (see Ref. [2]). The evidence for scalar turbulence
is, however, that anisotropies find their way down to the
small scales, manifesting in the scalar gradient skewness
of O�1�, independently of the Péclet number [3–8]. This
is due to the preferential alignment of ramp-and-cliff struc-
tures with large-scale scalar gradients, present in most
experimental situations. For structure functions Sn�r� �
����T �r� 2 T �0����n�, this persistence is revealed by normal-
ized odd orders S2n11�S

n11�2
2 decaying more slowly than

the expected r2�3 (see Ref. [1]). Is this experimentally
observed behavior signaling that small scales are fully
imprinted by the large scales and that the universality
framework should be discarded altogether? This is the first
issue, raised in Refs. [1,5], that we shall investigate in this
Letter. The second is about the consequences of cliffs for
high-order intermittency. Their strength candidates them
for the dominant contributions to strong event statistics,
and the issue raised in Ref. [9] is whether structure func-
tion scaling exponents are then saturating to a constant for
high orders n.
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Numerical simulations are an ideal tool to analyze the
previous questions, allowing one to probe universality, by
comparing the results obtained with two different types of
injection, and saturation, by gathering enough statistics to
capture strong events. Here, we shall take for y a 2D flow
generated by a Navier-Stokes inverse energy cascade [10].
Universality is then understood as dependence of scalar
properties on the injection mechanisms for this fixed y sta-
tistics. The scalar is injected at large scales, comparable
to those where the inverse cascade is stopped by friction
effects, and its properties are investigated in the energy in-
ertial range (see Ref. [11] for details). There, the velocity
is isotropic, scale invariant with exponent 1�3 (no intermit-
tency corrections to Kolmogorov scaling [11,12]), and has
dynamical correlation times (finite and free of synthetic
flow pathologies discussed in Ref. [7]).

As for scalar injection, a first choice is naturally sug-
gested by experiments, where it usually takes place via
a large-scale gradient. We assume then, as in Refs. [7,8],
that the average �T � � g ? r and we integrate the equation
for the fluctuations u � T 2 g ? r, i.e., (1) with a source
term 2y ? g on the right-hand side. A snapshot of the
u field is shown in Fig. 1. The presence of the gradient g
breaks isotropy and allows for asymmetries and nonvanish-
ing odd-order moments in the scalar statistics. The second
choice is a more artificial random forcing f�r, t� added
to (1). Its motivation is to produce an isotropic statistics,
e.g., by taking f Gaussian, with zero average and correla-
tion function � f�r, t� f�0, 0�� � d�t�x�r�L�. The scale L
where the injection is concentrated is taken comparable to
the velocity integral scale. The equations for the scalar are
integrated in parallel to the 2D Navier-Stokes equation for
about 100 eddy turnover times by a standard pseudospec-
tral code on a 20482 grid. In the runs presented in the
following, the diffusive term is replaced by a bi-Laplacian,
but it was checked by another series of simulations that us-
ing a Laplacian gives consistent results, although on less
extended scaling ranges.
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FIG. 1. A snapshot of the scalar fluctuation field for the injec-
tion by a mean gradient. Grey scale is coded according to the
deviation from the average value (from white to black).

Let us first show that the persistence of anisotropies ob-
served in experiments occurs also in our case. Odd-order
structure functions vanish in the randomly forced case. In
the shear case they do not, except for separations r�g.
For nonorthogonal r’s, the scaling exponents do not de-
pend on the direction r and in Fig. 2 we present the paral-
lel structure functions, i.e., r aligned with g. The resulting
third-order skewness S3�S

3�2
2 scales as r0.25, the second-

order exponent being �2�3 (see Fig. 4). As in the ex-
periments, the skewness decay is slower than the expected
r2�3. Furthermore, here enough statistics is accumulated
to give access also to the fifth order. The persistence ef-
fect is now dramatic as S5�S

5�2
2 � r20.2 increases at small
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FIG. 2. The third and the fifth-order parallel structure func-
tions for the injection by a mean gradient. In the inset, local
scaling exponents dSn�r��d logr. The measured exponents are
z3 � 1.25 6 0.04, z5 � 1.38 6 0.07, with error bars estimated
from rms fluctuations of local scaling exponents.
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scales. Intermittency generates, of course, an ambiguity
in the normalization, e.g., S5�S

5�4
4 is decaying, albeit very

slowly. This reflects the fact that scalar increment proba-
bility distribution functions (PDF’s) change shape with r ,
and one should then be specific about which part of it is
sampled and the choice of the observable representative of
the anisotropy degree. It is, however, unambiguously clear
that local isotropy is not fully restored at small scales and
the quality of the scaling laws found here indicates that this
is a genuine effect, not related to finite Péclet numbers.

More insight into this breaking of full universality is
gained by analyzing scalar increment PDF’s and moments
of even order, which are nonvanishing for both types of
forcing. Figure 3 shows that the PDF’s for the two types
of injections do not have the same shape (the same hold-
ing when symmetric parts are taken). In the shear case,
the separations r have been taken along the diagonal direc-
tions, at angles f � p�4 with respect to g. This choice
is motivated by the application of the procedure developed
in Refs. [13,14] to the 2D case and permits removal of
the first subleading anisotropic contribution ~ cos2f to
even-order moments. The fact that the PDF’s have differ-
ent shapes implies that the adimensionalized constants Cn

in structure functions Sn�r� � Cn�er�n�3�L�r�n�32zn are
not universal, as it was also explicitly checked by direct
comparison. Conversely, in Fig. 4 it is shown that scaling
exponents of even-order moments are the same for the two
types of forcing. For the PDF’s this means that, although
having different shapes, the curves are rescaling with r in
the same way.

The picture emerging from these results is as follows:
structure function exponents zn are universal, while con-
stants, and thus the PDF’s of scalar increments, are not.
The difference between isotropic and anisotropic situa-
tions is that the nonuniversal constants C2n11 in odd-order
structure functions vanish by symmetry for the former
case, while they generically do not for the latter. Structure
functions present anomalous scaling and there is no full
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FIG. 3. PDF’s of scalar increments normalized by their
standard deviations for three separations r � 2.5 3 1022,
5 3 1022, 1021 in the inertial range.
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FIG. 4. Low-order even structure functions. Local scaling ex-
ponents are shown in the inset. The measured exponents are
z2 � 0.66 6 0.03, z4 � 0.95 6 0.04, and z6 � 1.11 6 0.04.

restoration of isotropy while going toward small scales.
This picture of universality is weaker than in Kol-
mogorov’s 1941 theory, but coincides with the one
emerged for intermittency in the Kraichnan passive scalar
model [15–17] (see also Ref. [1]). The velocity used here
has finite correlation times; scalar correlation functions do
not obey closed equations, yet the universality properties
are the same. This points to a broader validity of the
mechanisms identified for the Kraichnan model, and it is
likely that the same universality framework generically
applies to passive scalar turbulence.

Let us now discuss the consequences of cliffs for the
intermittency at high orders. Their singularity strength
suggests that the scaling exponents might saturate at large
orders, i.e., zn tends to a constant z` for large enough
n. Physical self-consistency for the survival of steepen-
ing strong fronts is demonstrated in Ref. [18], where satu-
ration is shown to imply that dissipation preferentially
spares the cliffs with the largest jumps. High-order struc-
ture functions in our simulations are shown in Fig. 5, to-
gether with the zn vs n curve, compatible with saturation.
The same holds for ratios of two moments vs r or one
moment vs the other. Note that, for any finite-size field,
there are orders where the moments start to be spoiled
and some strongest single structure having a dissipation
width will plausibly dominate the statistics, as in Burg-
ers’ equation [19]. The convergence of the moments was
inspected by the usual test of checking that �drT �14P
decays before the PDF P �drT � of the scalar increments
drT � T �r� T �0� becomes noisy. An alternative observ-
able more reliable than moments (as less sensitive to the
extreme tails) is looking, for fixed drT , at how P varies
with the separation r . Saturation is equivalent to the PDF
taking the form P �drT � � rz`Q�drT�Trms� for drT suf-
ficiently larger than Trms � ��T 2 �T ��2�1�2. The collapse
of the curves r2z`P �drT � in Fig. 6 is therefore a signa-
ture of saturation and gives the unknown function Q. In
FIG. 5. Scalar structure functions of orders 10, 12, and 14.
The scaling exponents are shown in the inset.

Fig. 7, we plot the cumulated probabilities
R`

drT P vs r
for various drT and the parallelism of the curves is again
the footprint of saturation. Explicit evidence for the uni-
versality of z` is provided in Fig. 6.

The physical origin of cliffs resides in the Lagrangian
structure of (1), i.e., in the fact that particles are passively
transported by the velocity y. In regions where veloc-
ity gradients are sufficiently persistent in space and time,
widely spaced particles tend to approach and generate the
observed abrupt variations of the scalar field. This sug-
gests that even though quantitative aspects, such as the or-
der of saturation or the value z`, depend on the choice of y,
the saturation phenomenon itself should occur for a wide
class of random velocity fields. The Kraichnan model [9]
is unfavorable for saturation because of the short velocity
correlation time. Despite this, for large dimensionalities
of space, saturation analytically follows from an instanton
solution [20]. For the 3D case, saturation was phenomeno-
logically suggested in Ref. [21] and inferred from an in-
stantonic bound in Ref. [22]. Direct numerical evidence is
provided by our 3D numerical simulations whose results

10-6

10-4

10-2

100

102

-5 0 5

δrT/ Trms

r -
 ζ

∞
℘

(δ
rT

)

10-6

10-4

10-2

100

102

10-10

10-8

10-6

10-4

10-2

100

10-3 10-2 10-1 100 101

r

P
ro

b[
|δ

r T
| >

 2
.5

 T
rm

s
]

shear
random forced

FIG. 6. On the left, the PDF’s in Fig. 3 multiplied by r2z` .
The upper curves are for the random forcing and the lower ones
for the shear case. On the right, cumulated probabilities for
scalar fluctuations to exceed lTrms vs r, with l � 2.5.
2387



VOLUME 84, NUMBER 11 P H Y S I C A L R E V I E W L E T T E R S 13 MARCH 2000
10-8

10-6

10-4

10-2

100

10-3 10-2 10-1 100 101

r

λ=2.25

λ=2.5

λ=2.75

λ=3

P
ro

b[
|δ

r T
| >

 λ
 T

rm
s

]

random forced

10-2 10-1 100

Compensated by r-ζ ∞

FIG. 7. As in Fig. 6, for different values of l in the randomly
forced case. The curves compensated by r2z` , with z` � 1.4,
are shown in the inset.

are presented in Fig. 8. Scaling exponents have been mea-
sured using the Lagrangian method presented in Ref. [23]
and �2 2 g��2 is the spatial Hölder exponent of y, as in
Ref. [1]. The order of the moments needed to observe satu-
ration is expected to diverge for g ! 2, while for g ! 0
the action of large-scale gradients should favor close ap-
proaches between particles. The order is thus expected to
reduce with g and for the smoothest velocity in Fig. 8 satu-
ration is indeed occurring already at the fourth order and
thus becomes observable. This confirms the physical pic-
ture of saturation due to the cliffs formed in the scalar field
and the genericity of the phenomenon for scalar turbulence
intermittency.
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