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The process of heat conduction in a chain with a periodic potential of nearest-neighbor interaction
is investigated by means of molecular dynamics simulation. It is demonstrated that the periodic poten-
tiad of nearest-neighbor interaction alows one to obtain normal heat conductivity in an isolated one-
dimensional chain with conserved momentum. The system exhibits a transition from infinite to normal
heat conductivity with the growth of its temperature. The physical reason for normal heat conductivity
is the excitation of high-frequency stationary localized rotational modes. These modes absorb the mo-

mentum and facilitate locking of the heat flux.
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The process of heat transport in one-dimensional lattices
has become a challenging problem of nonlinear dynamics
and statistical physics since the well-known work of Fermi,
Pasta, and Ulam (FPU) [1]. They have revealed that weak
anharmonicity of nearest-neighbor interaction is not suf-
ficient to provide Fourier law of heat conductivity. This
result questions the universal validity of the well-known
Peierls model of the heat transport in dielectrics [2].

The general reason for the absence of the normal heat
conductivity in the system of FPU is its closeness to the
exactly integrable weakly nonlinear string described by
the Korteveg—de Vries equation. Similarly, the exactly
integrable Toda lattice revea's the absence of normal heat
conductivity. Thus, thefirst necessary condition of the nor-
mal heat conductivity is stochastic behavior of the system.
A widely studied system of this sort is the diatomic Toda
|attice (the chain with the exponentia potential of nearest-
neighbor interaction and altering masses of the par-
ticles) [3]. It was demonstrated that this system has no
normal heat conductivity at low temperatures even if the
mass ratio is unfavorable for the integrability (1:2 [4]).
However if the temperature is sufficiently high, the system
becomes stochastic and demonstrates normal (linear)
temperature distribution along the chain if the temperature
gradient is applied. The reason for this effect is the
closeness of the diatomic Toda lattice to the integrable
Korteveg—de Vries string in the case of low temperatures
and to the stochastic diatomic billiard in the case of high
temperatures [5].

Recent large-scale numerical simulations had demon-
strated that the stochastization of the system is necessary
but not sufficient to provide Fourier law in the one-
dimensiona lattices. For a large variety of chains
(FPU with quartic potential and others) exhibiting linear
temperature distribution it was demonstrated that the
coefficient of the heat conductivity divergesin the thermo-
dynamic limit (as the number of particles N in the chain
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grows) as approximately N%37 [6]. Most recently the
same situation was proved to be the case for the diatomic
Toda lattice [7]. This paper also speculates that the heat
conductivity in the linear chain with translationally invari-
ant potentials (i.e,, with conserved momentum) aways
diverges. It should be mentioned that for a few studied
lattices with on-site potential (i.e., without conservation
of momentum) normal heat conductivity is observed
(ding-a-dong [8], ding-a-ling [9], and Frenkel-Kontorova
models [10,11]). With the above situation in view, the
chain with trandationally invariant potentials and nor-
mal (saturating) heat conductivity may be of essentia
interest.

The present paper deals with the class of chains with the
periodic potential of the nearest-neighbor interaction. Such
a potential describes, for instance, the relative rotation of
polymer fragments around the axis of the macromolecule
[12]. Thismodel israther essential from the physical point
of view since the interaction between macromoleculesin a
polymer crystal is much weaker than intermolecular inter-
action. Therefore in many situations the one-dimensional
picture of processes in a polymer crystal is of real physi-
cal significance rather than of pure academic interest. To
the best of our knowledge chains with a periodic poten-
tial have not been studied yet from the viewpoint of their
heat conductivity. Moreover, the systems of this sort have
essentia peculiarity, namely, formation of nonlinear local-
ized rotational modes [13].

Let us consider a chain of molecules having a fixed
distance ! between the nearest neighbors. The molecules
are allowed to rotate around the chain axis. Let thevariable
¢, (t) denote the rotation of the nth molecule around the
chain axis in an immovable system of coordinates. Thus a
dimensionless Hamiltonian of the system will be
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where the dot denotes differentiation with respect to time
¢t and U(¢)—the potential of the nearest-neighbor inter-
action is a non-negative 27r-periodic function which satis-
fies the following conditions: U(0) = 0, U'(0) = 0, and
U"(0) = 1. For the sake of the present simulation this po-
tential is chosen in the simplest form

U(p) =1 — cose . )
While simulating the heat conductivity in atomic chains,
the Nose-Hoover [14] model of a heat bath is commonly
used. However, it was demonstrated that this model does
not ensure correct energy distribution for the chain [15].
Therefore the classic Langevin model of the heat bath is
used. A chain of N moleculesis considered, Ny molecules
from each side being coupled to the Langevin heat baths
with temperatures T and T-—, respectively. Equations of
motion for this system are written as

$n = F(dns1 — bn) = F(dn — due1) = ¥ + &us
n=1,...,Np,

$n = F(dns1 — b0) = F(dn — du1), -
n=Ny+1,...,N — Ny,

bn = F(pns1 — bn) — F(bn — bu-t) = Ybu + 1,
n=N-—-Ny+1,...,N,

where function F(¢) = dU(¢)/d¢, vy is a coef-

ficient of linear relaxation, and ¢,, 7, ae white
Gaussian noise governed by the following cor-
relation relationships: &)y =0, (mq(2)) =0,

Ent)mi(t2)) = 0,(,(t1)ér(12)) = 2yT+ 6 6(t2 — 11),
and (n, (1) ni(t2)) = 2yT-8,46(t, — 11).

The system of equations (3) has been integrated numeri-
cally. All values and processes were analyzed for time
scales of 10°-107, whereas the thermal equilibrium was
approached at the scale 10°. Then temperature profile

r =@ =it [(Gear @
0

t—0 t

and loca heat flux
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of the chain were computed. Here j, = —[F(dp+1 —
b)) + F(d, — dn—1)]dn/2. The chain has been
simulated for the following values of parameters:
v = 0.1, Np = 50, N = 150, 200, 300, 500, 700, 900,
1300, 1700, 2100, 2400, and zero initial conditions
{$, = 0,0, =0"_,. Thermal equilibrium was ap-
proached within the time scale + = 10°. Time averages
(4) and (5) were computed afterwards over the character-
istic scale t = 10°-107.

The linear temperature distribution formed due to the
temperature gradient at the ends of the chain is presented
in Fig. 1. The heat flux J, in the chain outside the heat
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baths Ny < n =N — Ny is constant J, = J. The tem-
peratures of the ends of the chain are well defined (a-
though they are different from the prescribed temperatures
of the heat baths), and thus reliable calculation of the heat
conductivity of the chain is possible:

k(N1) = IJN{/(Tny+1 — Tn-n,) (6)

where Ny = N — 2N, is a length of the chain fragment
outside the heat baths. The limit value
K = Nlli_mm k(N1) (7)
corresponds to the coefficient of heat conductivity of the
chain under temperature 7 = (T4 + T-)/2.
The aternative way to compute the heat conductivity of
the chain is based on the Green-Kubo formula [16]

L 1 !
Ky = tll_}rg}lll_r’rlﬁ fo c(r)dr, (8
where the correlation function c(z) = {(J,(7)J(7 — 1)),
and J,(¢) = >, j.(2) isthe average heat flux in the chain.

While computing this correlation function the cyclic
chainsof N = 4000 molecules completely connected with
the Langevin heat bath have been considered. When the
thermal equilibrium has been approached, the bath has
been removed and the heat flux in the free chain has
been analyzed. In order to improve the accuracy the re-
sults were averaged over 500 different realizations of the
Langevin bath.

Numerical simulation of the chain has demonstrated that
there exists a certain critical value of the temperature 7
in the interval [0.2 0.3]. If T < T, then the heat con-
ductivity of the chain diverges in the limit of Ny — o and
for T > T, the heat conductivity converges to finite value.
The dependence of « on N, at the temperature T = 0.2 is
presented in Fig. 2. Asisdemonstrated there, the heat con-
ductivity « diverges approximately as N{-*°. This law of
divergence remarkably coincides with those discovered for
other systems earlier [6,7], although the power is dlightly
less than reported there. However, for the temperatures
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FIG. 1. Distribution of local temperature T, in the chain with
a periodic potential of nearest-neighbor interaction (N = 500,
Ny =50, T+ =0.11, T- =0.09; time of averaging is
t =5 X 10°).
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FIG. 2. Dependence of Ink on InN;. Markers 1 (circles) rep-
resent numerical data at the temperature 7 = 0.2 (T+ = 0.21,
T- = 0.19). The line 2 approximating these data has slope
8 = 0.26. Markers 3 (diamonds) represent the numerical data
aT =03 (. =033 T- = 0.27). Corresponding line 4 has
zero dope (k = 31.8).

T > T this divergence disappears and the limit is finite.
As is aso demonstrated in Fig. 2, for T = 0.3 the heat
conductivity «(N;) approaches its limit value k = 31.8
with a growth of Nj.

As the last result is very different from the results for
other chains with conserved momentum, the behavior of
the heat conductivity was checked independently with
the help of the Green-Kubo formula (8). The investiga-
tion of the correlation function ¢(z) has confirmed the
conclusion concerning the finite heat conductivity of
the chain. The reason is that for the temperature region
T > T, the correlation function decreases exponentially
with time and therefore the integral in formula (8) con-
verges. Hence the heat conductivity «. is finite. For
To < T < 2 the correlation function decreases mono-
tonically and for T > 2 the decrease is exponential with
oscillations. It should be mentioned that the two ways
of numerical calculation of the heat conductivity provide
amost equal results (the difference never exceeded a few
percent).

Then the dependence of the heat conductivity on the
temperature of the chain has been computed by means
of the Green-Kubo formula (8). It was demonstrated that
for T — oo the coefficient of heat conductivity decreases
exponentially and diverges for T — T, (see Fig. 3).

In order to investigate the mechanism of heat conduction
the dependence of the global heat flux J on the tempera-
ture gradient imposed on the chain was computed. The
temperature T— was set equal to zero. As is demonstrated
in Fig. 4, the value of the heat flux grows monotonically
for temperatures T < T, = 1.3. At T = T, the heat flux
approaches its maximum value and decreases with further
growth of the temperature gradient. Such unexpected be-
havior is related to excitation of nonlinear localized rota-
tional modes of the chain.

FIG. 3. Dependence of the heat conductivity « on the tem-
perature T. The inset demonstrates the same dependence in
semilogarithmic coordinates. The heat conductivity decreases
exponentially at sufficiently high temperatures.

Physically these modes correspond to fast rotation of
one molecule, whereas the rotation angles of its neighbors
remain small. Such modes are possible due to the periodic
and finite potential of the nearest-neighbor interaction. A
necessary condition of localization is that the average fre-
quency of rotation has to be inside the attenuation zone
of the linear spectrum of the chain. More exact measure-
ments with numerical technique have demonstrated that
for the chain considered the localized rotational modes ex-
ist for frequency region » > 2.17562 (and the phonon
propagation zone is 0 = w = 2). Numerical simulations
demonstrate that these localized excitations prevent free
propagation of phonons. Rotational localized excitation in
the chain with finite temperature has a finite lifetime and
is gradually destroyed due to interaction with phonons.

In order to elucidate the role of rotational localized ex-
citations in the heat transfer and relaxation, another nu-
merical experiment has been performed. The chain of
N = 300 particles was heated in the Langevin thermal
bath which was removed after the thermal equilibrium was

approached. In order to provide a channel for energy
0.12r
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FIG. 4. Dependence of the heat flux J on the temperature
gradient AT in the chain with N = 300, Ny = 50, T+ = AT,
T- = 0.
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FIG. 5. Energy relaxation in the heated chain. Dependence of
local energy E on the number of the molecule n and time ¢ is
represented. Initial temperature is 7 = 3, then the relaxation
without energy supply and with friction within the heat baths is
considered (N = 300, Nyo = 50, T+ = T_ = 0).

absorption viscous damping at the ends of the chain has
been introduced [it was sufficienttoput 7+ = 7—- = 0in
the system of equations (3)]. The numerical simulation has
demonstrated an essential number of localized rotationsin
the chain. At T = 1 their number is rather small and they
decay rapidly, thus they do not constitute any obstacle for
the relaxation of energy. For T = 2 their effect on the re-
laxation is rather essential since the relaxation of energy
in the middle of the chain becomes possible not before
the localized rotations at the end parts of the chain are de-
stroyed. Such stepwise character of relaxation dependent
on the destroying of localized rotational modesfor 7 = 3
is demonstrated in Fig. 5. The results of previous simula
tions demonstrate that at least at the qualitative level the
process of the heat transfer in the chain with periodical
potential of the nearest-neighbor interaction may be de-
scribed as a sequence of “lockings’ and “releases’ of the
heat flux. They occur due to the excitation and splitting
of corresponding localized rotational modes, respectively.
Thus, at high temperatures the diffusion of energy is gov-
erned mainly by the process described above rather than by
interaction between long-wavelength Fourier modes being
the reason for the divergence of the heat conductivity in
the FPU-like chains [6].

Additional numerical simulation had demonstrated that
the periodic waves in the chain of rotators become unsta-
ble as their energy approaches a certain critical value and
localized rotational modes emerge as the result of thisin-
stability. The physical reason for this instability seems to
be rather obvious—the periodic wave becomes unstable
astherelative rotation of neighbor particles becomes close
to 180°. So, with growth of the temperature the energy
stored in the periodic wavesis saturated, and the concentra-
tion and the lifetime of the rotational modes both increase.
That in turn accounts for the saturation and decrease of the
heat flux with the growth of the temperature at T > T,
(Fig. 4).

Hence, the above results allow one to conclude that the
transition from infinite to finite heat conductivity with the
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growth of temperature is observed in a one-dimensional
chain with periodic potential of the nearest-neighbor inter-
action. The physical reason for normal heat conductivity
is the excitation and splitting of nonlinear localized rota-
tional modes. These modes prevent free propagation of the
heat flux. Because of the finite lifetime of these rotational
modes the process of the heat conduction constitutes suc-
cessive lockings and releases of the heat flux.

Therefore the heat conductivity in the 1D chain may be
normal despite the conservation of momentum. It is pos-
sible to speculate that it is not the case in previously stud-
ied chains with infinite nearest-neighbor potential (FPU,
diatomic Toda lattice, and others) because localized vibra-
tional modes known in such systems (discrete breathers
[17]) do not reflect and lock the acoustic phonons like the
localized rotational modes (rotobreathers) in the chain of
rotators.
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