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Estimation of Noise Levels for Models of Chaotic Dynamical Systems
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We investigate how far it is possible to identify and separate dynamical noise from measurement
noise in observed nonlinear time series. Using Bayesian methods, we derive estimates for the two noise
levels, and find that, given a good model of the dynamics, these can give accurate results even if the
dynamical noise level is orders of magnitude smaller than the measurement noise level, whereas a simple
calculation of root mean square error badly understates the dynamical noise. We argue that this allows
better estimates of the underlying dynamical time series, and so better predictions of its future and of
its fundamental dynamical properties.

PACS numbers: 05.45.Tp, 05.40.Ca
Many complex physical phenomena can be generated by
relatively simple nonlinear mechanisms. Often the precise
nature of such mechanisms is not known and one is forced
to build models directly from observed data, and in par-
ticular from observed time series. Deterministic nonlinear
autoregressive (NAR) models have proved a convenient
and popular structure for this purpose. Such models can
in principle capture all of the coordinate free properties of
a deterministic physical system. However, in practice no
physical system is entirely free of noise, and no model is
an exact representation of reality. We must therefore ex-
pect errors in the model dynamics (dynamical noise), and
uncertainty in matching the model states to observations
(measurement noise).

Such dynamical noise may represent genuine stochastic
behavior in the physics, the effects of unmodeled phenom-
ena, or other imperfections in the model dynamics. Mea-
surement noise can reflect not only random instrumental
errors in observables but also representativeness error that
they may be fundamentally different quantities to the ide-
alized model variables. A correct balance between the two
forms of noise is particularly important for making good
estimates of the recent state of the system, which is a pre-
requisite for predicting its future. This is well known in
linear systems through their effect on the Kalman filter. In
nonlinear systems changing the balance can also alter es-
timates of the deterministic skeleton of the dynamics, and
modify system invariants such as Lyapunov exponents and
the fractal dimension. It is thus important that our models
accurately represent both forms of noise, and that we have
reasonable estimates of their magnitudes (which may be
far from clear, even in models with a strong physical moti-
vation). The latter problem appears to have received rela-
tively little attention in the physics literature. In particular,
it has been usual to equate the root mean square (RMS)
prediction error with the dynamical noise level in a system.

The aim of this Letter is to develop a more sophisticated
analysis, which leads to more reliable estimates of the
noise levels and demonstrates that in general the RMS pre-
diction error is not a good indicator of the dynamical noise
level (even after measurement noise reduction). Since the
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way in which the two types of noises interact with a non-
linear deterministic system is far from obvious, our analy-
sis is based on the consistent use of a full probabilistic
model M for the noise levels s � �sD , sM�, the underly-
ing time series x, and the observed data y . A widely used
form for this is the stochastic NAR structure

xn11 � f�xn, xn21, xn22, . . .� 1 e
�D�
n11 ,

yn11 � xn11 1 e
�M�
n11 ,

(1)

where e�D� and e�M� are independent identically distributed
Gaussian dynamical and measurement noise processes
with mean 0 and variance s

2
D and s

2
M , respectively.

The joint probability density P� y ,s jM� for y and s
given the model M can be factorized in two ways, either
as P� y js , M�P�s jM� or as P�s j y , M�P� y jM�. The
first of these represents the forward process by which one
could imagine generating the data, taking a priori proba-
bility density for s given only the model M, and then the
likelihood that such a s would generate a particular data
set y. The second represents the inverse process, where
one considers first the possible data sets y given M, and
then the posteriori probability density of s given M and
such a y . The equivalence of the two implies

P�s j y, M� �
P� y js , M�P�s jM�

P� y jM�
. (2)

This is the famous theorem of Bayes (1764). To be consis-
tent, any assignment of probabilities must (at least implic-
itly) reflect its structure: probabilities that disagree with
it cannot be coherent. A thorough discussion of this ap-
proach to uncertainty in physics can be found in the classic
book of Jeffreys [1].

The denominator in (2) is effectively just a normaliz-
ing constant P� y jM� �

R
P� y js , M�P�s jM�ds . We

shall consider only relative probabilities of the different
noise levels in this Letter, so P� y jM� will be left unevalu-
ated. In the numerator, P�s jM� represents prior beliefs
about possible values of s . Here, we shall assume no
previous knowledge about the scale of sM or sD , so that
all values of lnsM and lnsD are equally possible. This
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leaves the likelihood P� y js , M� to evaluate. The dynami-
cal noise does not directly affect the likely observations y:
it acts on them only indirectly through the likely dynami-
cal series x. To obtain P� y js , M� we must therefore con-
sider the joint probability of x and y , and then integrate out
(marginalize) the possible realizations of x:

P� y js , M� �
Z

P� y jx, sM , M�P�x jsD , M� dNx .

(3)

Provided that there is a consistent splitting between
the finite-time expanding and contracting directions, it is
known [2] that at small noise levels sD the inferred tra-
jectory x consistent with earlier and later measurements
becomes sharply localized. The integral can therefore be
estimated by a Laplace approximation, i.e., by replacing
the integrand, which is proportional to P�x j y ,s , M�, with
an appropriate Gaussian distribution centered on the most
probable series x̂.

The removal of the effects of measurement noise in y
to estimate x̂ is known as noise reduction. A number of
approaches have been suggested [2–5], but these usually
seek an orbit which minimizes all deviations from deter-
minism. This will typically not be the most probable orbit
if sD fi 0. We therefore first reconsider the noise reduc-
tion problem from a Bayesian perspective. The assumed
Gaussian dynamical noise gives x the prior distribution

P�x jsD , M� ~ P�x1,...,d� exp

"
2

NX
d11

√
� fi 2 xi�2

2s
2
D

!#
,

(4)

where P�x1,...,d� is the probability distribution for the initial
state-space point and fi � f�xi21, . . . , xi2d�. The Gauss-
ian measurements give the likelihood

P� y jx, sM , M� ~ exp

"
2

NX
1

√
� yi 2 xi�2

2s
2
M

!#
, (5)

and so, combining (4) and (5),

P�x j y ,s , M� ~ P�x1,...,d� exp

"
2

X √
� fi 2 xi�2

2s
2
D

1
� yi 2 xi�2

2s
2
M

!#
.

(6)

There are situations (e.g., the large-scale meteorological
models in [6]) where a careful consideration of P�x1,...,d�
might add useful information to the inferred distribution
of possible histories x by ensuring that it reflects only
physically plausible initial states. However, for simplicity
we will take P�x1,...,d� to be a flat distribution over the
state space. This reduces (6) to a nonlinear least squares
problem, the minimization of

Q �
X

�� fi 2 xi�2 1 �s2
D�s2

M� � yi 2 xi�2� . (7)

As pointed out by Davies [5], the matrix L � ≠fi�
≠xj 2 I is banded and triangular, so Newton-like meth-
ods can be used efficiently. The most probable x can be
found rapidly by repeatedly solving (e.g., by QL decom-
position [7]) the overdetermined linear system0B@ 2L�x�

sD�sMp
dLM

1CAdx �

0B@ f�x� 2 x
�sD�sM� � y 2 x�

0

1CA . (8)

Here dLM�dx�2 is an additional Levenberg-Marquardt
term, which limits the step-size dx and stabilizes the
iteration if necessary. For best results dLM should not be
set constant (as in [5]), but should be chosen adaptively,
using either the simple approach of [7] or the algorithm of
Moré which has become the standard [8]. This provides
robustness in the initial stages of the optimization, without
impeding final convergence to the optimum.

This procedure represents a balance between closeness
to determinism and closeness to the observed data which
echo the original noise reduction papers of Kostelich and
Yorke [3]: their tradeoff parameter w can be identified
from (7) as an ad hoc value set for s

2
D�s

2
M . We shall now

use the resulting x̂�sM , sD� to optimize the sM and sD .
This closely parallels work by Gull and by MacKay [9,10],
balancing analogously competing Gaussian influences in
the contexts of image reconstruction and function fitting.
We proceed similarly, combining the uniform priors on
lnsM and lnsM with the Laplace approximation to (3)
from (6) at x̂ to obtain the log posterior distribution,

lnP�lnsD , lnsM jy , M� � const 2 �N 2 d� lnsD

2 N lnsM 2

PN
1 � yi 2 x̂i�2

2s
2
M

2

PN
d11� fi 2 x̂i�2

2s
2
D

2
ln detA

2
,

(9)

where A is the Hessian matrix of lnP�xjy ,s , M� at x̂,

A � ==�Q�2s2
D� � �1�s2

D� �LTL 1 �s2
D�s2

M�I� . (10)

Differentiating (9) with respect to lnsM and lnsD (ne-
glecting any changes in LTL caused by induced changes
in x̂) now gives a pair of consistency relations for the most
probable values of the log noise levels,

s2
M �

PN
1 � yi 2 x̂i�2

N 2 gM
, s2

D �

PN
d11� fi 2 x̂i�2

N 2 d 2 gD
.

(11)

These formulas and their application constitute the main
result of this Letter. The quantities

gM � �1�s2
M�Tr�A21�, gD � N 2 gM (12)

have an attractive and intuitive interpretation [9,10]: if
Eq. (7) is decomposed into eigendirections of LT L cor-
responding to eigenvalues l

2
� j�, the solution in the jth di-

rection is given by x̂� j� � gM� j�y� j� 1 gD� j�xD� j� where

gM� j� �
�s2

D�s
2
M�

l
2
� j� 1 �s2

D�s
2
M�

, gD� j� � 1 2 gM� j� ,

(13)
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and xD� j� is the Newton estimate for a perfectly determin-
istic orbit calculated from x̂. Each gD� j� therefore identi-
fies the extent to which that eigendirection has been set by
the dynamics, and the sum gD �

P
j gD� j� can be inter-

preted as the effective total number of degrees of freedom
set by the dynamics rather than by the measurements. A
similar effective number of degrees of freedom for linear
scatterplot smoothers is discussed by Hastie and Tibshirani
in [11].

Of course, x̂, gM , and gD depend strongly on the current
values of sM and sD . The estimation was therefore prac-
tically carried out by first setting sD � 0 to find the most
deterministic time series compatible with the data. Then,
having initialized both gM and gD to zero, a consistent set
of estimates for x̂, gM , gD , sM , and sD were found itera-
tively, by alternately using (11) to estimate sM and sD ,
then further minimizing (8) and applying (12) to reesti-
mate x̂, gM , and gD . This was found to converge very
rapidly, requiring only a handful of further least-squares
steps after the initial minimization to pull x̂ back appropri-
ately close to the observations.

As a detail, it should be noted that the matrix A21 (which
is full rank) need never be explicitly formed [12]. In-
stead (12) can be estimated using Tr�A21� � s

2
D	�G21r�2


where r is a vector of unit variance Gaussian random num-
bers, and G is the L factor found in the QL decomposition
used to solve (8) (so that A � s

22
D GT G). Typically a good

value for Tr�A21� can be obtained in this way using only
a few dozen random vectors r. The exception is when
�sD�sM� is very small, so that all but a few of the eigen-
values of A21 are small, and the samples G21r acquire
high kurtosis. In this case, the few contributing eigenval-
ues can be estimated directly using Lanczos methods.

To test the s estimation algorithm, 400 different time
series of 1000 points were generated from the Hénon
system

xn11 � 1 2 1.4x2
n 1 0.3xn21 1 e

�D�
n11 . (14)

In each case the measurement noise level sM was fixed
at 2.5 3 1022, and a different value between 1027 and
1022 was chosen for the dynamical noise level sD . This
gave the results shown in Fig. 1. The simple Gaussian
estimates for the uncertainties in lnsD and lnsM were
obtained by differentiating (9) again, including induced
changes in x̂�sD , sM�, to give

D lnsD �

√
4gM 2 2d 2

2

s
4
M

TrA22

2 4
s

2
D

s
2
M

É
G21 �y 2 x̂�

sM

É2!21�2

,

D lnsM �

√
2N 2

2

s
4
M

TrA22
(15)

2 4
s

2
D

s
2
M

É
G21 �y 2 x̂�

sM

É2!
21�2

.

The method has accurately revealed dynamical noise
levels 1000 times smaller than the measurement noise, and
2368
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FIG. 1. Estimated log10sM and sD against actual log10sD .

given reasonable error estimates. Furthermore the estimate
for sD is significantly different to the ad hoc value given
by finding the RMS deviation from determinism after noise
reduction:

RMS�e�D�� �

√PN
d11� fi 2 x̂i�2

N 2 d

!1�2

. (16)

Compared to (11) this differs by an amount gD in the
denominator. The significance of this term is shown in
Fig. 2. While N 2 d remains a constant 998, the number
N 2 d 2 gD of effective measurements of the dynamical
noise level falls steadily, from about 150 at sD � 1022

to about 0.4 at sD � 1024 and 0.1 at sD � 1025. The
estimate of sD from (11) in the latter case will thus be
�100 times larger than from (16).

An extreme case occurs when the algorithm can find a
perfectly deterministic or “shadowing” orbit, as it could
for the 167 Hénon time series considered which appear as
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FIG. 2. N 2 d 2 gD against estimated log10sD .
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a band across the bottom of Fig. 1. The RMS dynamical
error is then precisely zero, but, as is well known from
the shadowing theorems of Anosov and Bowen [13], just
because the model can deterministically shadow the ob-
servations to within O�sM�, this does not mean that sD is
necessarily (or even probably) zero. Equation (11) deals
quite simply with lengths of the orbit for which shadow-
ing is indicated: it ignores them. Although the numeratorPN

d11� fi 2 x̂i�2 becomes zero, so too does the denomi-
nator N 2 d 2 gD . All N 2 d components of the time
series have been set by the dynamics, so there are effec-
tively no good measurements of the dynamical noise level
and sD is essentially indeterminate.

A deeper understanding of this situation can be ob-
tained from the full log probability distribution (9). When
shadowing is possible and the true sD is very small,
lnP�logsD� is dominated by the terms 2�N 2 d� lnsD 2

�1�2� ln detA, giving the form shown in Fig. 3. This re-
flects a contribution of 2�1�2� ln�l2

� j� 1 s
2
D�s

2
M� from

each nonzero eigendirection, which is insensitive to sD as
long as l

21
� j�sD ø sM . Thus the distance that the nonzero

sD allows x̂� j� to move from xD� j� is unobservably small
in the measurement noise. Although there is no dynami-
cal error, all that can be inferred when sD is very small is
that sD & l�d11�sM , where l�d11� is the smallest nonzero
singular value of L.

However, in both hyperbolic and nonhyperbolic sys-
tems, shadowing may be possible at larger values of sD

than this. For example, Hammel et al. [14] have con-
jectured that shadowing within a distance sM ,

p
sD is

typically possible for up to O�1�
p

sD � iterates for 2D
maps with a rectangular noise distribution of width sD .
In such cases a shadowing orbit may still exist when the
true sD ¿ l�d11�sM . The highly correlated effects of
dynamical noise will then start to become statistically ap-
parent above the isotropic measurement noise in the ob-
servations. This will be most noticeable at points in the
orbit where stable and unstable manifolds are most nearly
tangent (cf. [15]), corresponding to the smallest singular
values l� j� of L. As the deviations from isotropy become
stronger, they cause the remaining terms in (9) to become
significant, effectively adding a broad bump to the middle
of the curve in Fig. 3. This is a second, more probable
solution �sD , sM� to the consistency equations (11), with
an orbit x̂ which is more probable than the shadowing or-
bit. A quick upward sweep through sD could be added
to check for this possibility whenever the noise reduction
algorithm finds a shadowing orbit.

In conclusion, therefore, even a perfectly deterministic
orbit x may not be an optimal estimate for an underlying
dynamical time series. Instead, we have shown that if a
good model of the form (1) is available, accurate estimates
of both the dynamical noise level sD and measurement
noise level sM can be derived, with corresponding error
bars and appropriate time-series estimates, even when sD
is orders of magnitude smaller than sM . Our approach can
2743

2744

-7 -6 -5 -4 -3 -2
log10 σD

C
on

st
. +

 ln
 P

FIG. 3. Log probabilities for an orbit created with sD � 0.

also be applied to more general models, with appropriate
modifications to the noise reduction step. In some physi-
cal situations, however, no a priori model will be available.
We are currently extending our approach to cover this case
by combining the model estimation with the noise reduc-
tion as in [16] within the overall probabilistic framework
described here.
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