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We consider the classical dynamics of a particlein aone-dimensional space-periodic potential U(X) =
U(X + 24r) under the influence of atime-periodic space-homogeneous external field E(t) = E(r + T).
If E(r) is neither a symmetric function of 7 nor antisymmetric under time shifts E(r = T/2) # —E(¢),
an ensemble of trajectories with zero current at + = 0 yields a nonzero finite current as r — . We
explain this effect using symmetry considerations and perturbation theory. Finally we add dissipation
(friction) and demonstrate that the resulting set of attractors keeps the broken symmetry property in the
basins of attraction and leads to directed currents as well.

PACS numbers: 05.45.Ac, 05.60.Cd

Transport phenomena are at the heart of many prob-
lems in physics. Nonlinear effects (as well as their quan-
tized counterparts) may lead to many novel results in this
area even for seemingly simple models (see, e.g., [1]).
Well-known applications include the dynamics of Joseph-
son junctions [2] and electronic transport through super-
lattices [3], to name a few. In the bulk of theoretical work
on transport phenomena nonzero dc currents are obtained
by applying time-dependent fields with nonzero mean. It
is normally expected that the opposite case may not lead
to a nonzero dc current. However, it has been also known
for along time that nonlinear dynamical systems may al-
low for the generation of ac fields from external dc fields
(Josephson effect) and even viceversa[2]. Of course, what
matters is a proper average over initial conditions, so that
one has to ask whether there exist (or do not exist) sets of
solutions which cancel their contribution to the total cur-
rent. This question calls for an analysis of the symmetry
properties of the system under consideration.

Let us make things more precise by considering a
paradigmatic equation of the following type:

X+ yX + fX)+ E@t) =0. (@)
Functions f and E are bounded and periodic with period
2rmandT = 27/ w, respectively, and have zero mean, and
max(|f(X)|) ~ 1. This equation describes, e.g., a particle
moving in a periodic potentia U(X) with f(X) = U'(X)
in one space dimension under the influence of a peri-
odic external field with friction [4]. It aso may describe
the current-voltage properties of a small Josephson junc-
tion under the action of a time-periodic external current
(here X becomes the phase difference of the complex order
parameter across the junction). This equation has been
considered by numerous authors, however typically with
harmonic functions f and E. We will show below that this
choice induces symmetries which lead to zero total dc cur-
rent. The purpose of this Letter is to demonstrate that a
proper lowering of the symmetries of even E(¢) alone (still
keeping its above defined properties) will lead to anonzero
dc current.
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Dissipationless case y = 0.—We first consider the
case of zero friction y = 0in (1). Inthe limit of large ve-
locities |X| > 1, f(X) can be neglected and the solution
X(t) = Xo + Pot + [ydt’ [y E(t")dt" has a bounded
first derivative. Thus the time average over the velocity on
agiven trgjectory is awell-defined nondiverging quantity.

To characterize the relevant symmetries of (1) we have
to consider transformations in X, ¢+ which lead to a change
of signin P. These are (i) areflectionin X — —X and a
shiftin or (ii) ashiftin X and areflectioninr — —r. We
need first to characterize the relevant symmetries of f(X)
and E(¢). For that we expand f and E into a Fourier se-
ries. f(X) = >, fre™, E(t) = X, Exe'®*. Zero mean
implies fo = Eo = 0, and reality yields fy = f*, Ex =
E*, (A* means complex conjugation). If f(X) = U'(X)
is antisymmetric after some appropriate argument shift
fX + X)=—f(-X + X)wecal f(X) possessing f,
symmetry. If E(¢) is symmetric after some appropriate
argument shift E(r + 7) = E(—t + 7) we call E(r) pos-
sessing E, symmetry. If E(r) changes sign after a fixed
argument shift (which trivially can be equa only to any
odd multiple of T/2) E(t) = —E(t + T/2), resulting in
E» = 0, we cal E(¢) possessing E,;, symmetry.

Now we can define the two relevant symmetry cases
of (1) called §, and S, below. If functions f(X) and
E(r) possess f, and E,;, symmetries, respectively, then
(1) is invariant under symmetry S,: X — (—X + 2X),
t —t + T/2. If function E(r) possesses £, symmetry,
(1) isinvariant under symmetry S,: t — (—t + 27).

Given a traectory X(z; Xo, Po), P(t; Xo, Py), with
X (t0; Xo, Po) = Xo and P(tg; Xo, Po) = Py, the presence
of any of the two symmetries §,,, §,, alows oneto generate
new trajectories given by
Sat =X(t + T/2;X0,Po +2X, —P(t +T/2;Xo,Po),

@)
—P(—t + 27Xy, Po) .

(©)
Note that these transformations change the sign of the
velocity P. Consequently the time average of P on the

Sp: X(—t + 27; Xy, Po),
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original trajectory will be opposite to the time averagessidering the equatioX + f(X) + E(—t) = 0 we arrive
of P on the generated new trajectories. There can bback at (1) by substitutiodl = —¢. So the current can be
more symmetry operations generating other trajectoriesnverted by applyingg(—1) instead ofE(z) in (1). A sec-
but those will not change the sign Bfand are thus not of ond way is to consider equatich — f(—X) — E(t) =0
interest here. which after substitutionX’ = —X again is mapped onto
The dynamical evolution of (1) allows both for (1). Thus another way of inverting the current is to apply
guasiperiodic solutions (cyclic iX for large P, and —f(—X) instead off(X) and—E(r) instead ofE(r) in (1).
periodic in X for small Py) and chaotic trajectories em- There is no simple way to invert the current by just invert-
bedded in a stochastic layer [1]. Assuming that ergodicitying space, i.e., by considerinf—X).
holds in the stochastic layer we conclude that the average To get a grasp of this result we consider the quasiperi-
velocity will be one and the same for all trajectories ofodic cyclic regime for U(X) = —cosX and E(t) =
the layer. SinceS, and S, when applied to a trajectory E,coswt + E,cod2wt + a). Note thatS, symmetry is
inside the layer generate again trajectories inside the laygpresent if, = 0 or E; = 0 andS, symmetry is present if
the presence of any of these symmetries implies that the = 0,7 or E; = 0 or E, = 0. Each individual trajectory
time-averaged velocity of any trajectory in the layer will for sufficiently largeP, gives a nonzero average velocity.
be zero. Note that we cannot obtain such a conclusion iThe question is whether we obtain a nonzero velocity after
both symmetries are absent. Indeed in Fig. 1 we showveraging over initial conditions with some distribution
the long-time runX(z) for a trajectory in the layer for function p(Xo, Py, o) reflecting equilibrium properties, at
several cases with and without symmetrksS‘h. While least, of coursep(Xy, Po, o) = p(Xo, —Po, fy). Heretg
with S,, 8, we find zero average velocities, we observeis the time when the trajectories with initial conditions
that the loss of5,, S, leads to a nonzero average velocity X, Py are started. In the simplest case we might assume
which is independent of the initial conditions but whosethat p is independent of,. Consider the cas@, > 1
sign depends on the way the symmetry is broken. Thand w > P,. In that case we can separate the solution
dynamics is characterized by anomalous transport, i.e., b¥(z) into a slow partX,(r) and a small fast parf(z).
Lévy flights of different length interrupted by direction- Expanding to linear order in the fast variable yields
changing perturbations. Nonzero current appears due to

a desymmetrization betweerély flights to the left and X, + & — sinX, — cogX,)é + E(r) =0. (4)
right, respectively. Especially trajectory 2 in Fig. 1 yields _ _ L
a nonzero velocity for a spatially symmetiio(X). Collecting the fast variables we fing — cogX,)¢ +

To answer the question of how to invert the direction ofE(r) = 0. This equation has to be solved by assuming

a nonzero current in the stochastic layer, we note that corfbat X, is constant and skipping the slow homogeneous
solution part. We findd = A; coswt + A, co2wt + a)

with A, = —E;/[w?* — cosX;,] and A, = —E,/
[4w? — cosX;]. Final averaging over the fast vari-
ables in (4) givesX, — sinX;, = 0. The crucial point
is to observe that the initial condition is now, =
X(t0) + &(t0), Po = Xs(to) + £(t0).  Since £(2) is a
completely defined function, defining the initial con-
ditions for X,P we obtain initial conditions for the
slow variables. The symmetry breaking will be hidden
there. Indeed, averaging over time we fik#(z)) =
(X,(¢)). Assuming, e.g., large values d@f, the time-
average velocity of the slow variable will be simply
(X,(1)) = sgn(Po)v/2H, [1 — 1/(4H?) + 0(P, *)]  with
2H, = P> — 2cosX,. Expanding (X,(1)) in powers
of 1/P, we will encounter termsP, °£3 (1) co$[X, —
&(r0)]. Averaging overX, and 7, we obtain in leading
order for the average velocity

0 1 2 3 4 2
5 25 1 EYE; .

10t 2 2P W Sina (5)
FIG. 1. Dependenc&(z) versust for different realizations of
(1) andy = 0 with f(X) = cosX + v,co92X + 0.4), E(t) =  which remains nonzero and will contribute to an average
E,sin(wt) + E, SIr\(.Za)t + 0.7) and w =24. (1): v, = 03 nonzero current after further averaging o¥gr Note that
E[ = _2.3, E2 = O, (2) V) = O, E] = _2.3, E2 = _1.38, h d d d _ O E _ 0
3): v, =06, E, = =23, E, = —1.38; (4): same as (3) but the directed current |sappearsEﬁ =vore=900r
with f(—X) instead off(X). Note that in this case the direction @ = 0,7 when the mentioned symmetries are restored.
of the current is not inverted as explained in the text. The current direction is defined in this perturbation limit
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by the sign of the producE, sine. Finally in the limit  which relates them to each other. However after comput-
Py — o the current amplitude tends to zero, although thang the average velocities, we will still find that they equal
symmetries are not restored. The reason is that in thisach other up to a sign. The symmetry breaking is, in
limit we recover the problem of a free particle moving fact, hidden in adesymmetrization of the two basins of at-
under the influence of an external fieklr) which can be traction. It is this asymmetry which after averaging over
easily solved [5]. Averaging ovey in this case yields zero initial condition distributions (symmetric iR) will lead to
total current. It follows that nonzero total currents occura different number of particles attracted to both cycles and
if symmetriesS, andS, are violated and if we provide a thus to a nonzero current. To observe the desymmetriza-
mechanism of mixing of different harmonics as it happengion of the basins locally we may tune some parameter of
in nonlinear equations of motion (see also [6]). the equation to such a value that one of the cycles becomes
We checked the above statements of the perturbationnstable. In that case its basin of attraction shrinks to zero
theory for the quasiperiodic regime by computing numeri-and disappears. If the other (previously symmetry related)
cally the average velocityX,) for two initial conditions  cycle will still be stable, i.e., if its basin of attraction still
with opposite initial velocities+ P, taking their half sum, exists, the asymmetry in the basins becomes obvieose
and finally averaging over all possible initial positiokis ~ of them completely disappeared, and the other one still ex-
and over the initial time,. We observe a nonzero current ists. We tested these predictions and found complete agree-
except for the symmetric values ef. Finally we did the ment. We used
same direct computation in the initial equation (1). The

results are similar. f(X) = sinX + vy sin2X + 04), (6)
In order to keep the dc current nonzero the valuexof
should be kept fixed with time, or at least to be allowed E(t) = E; sinwt + E;sinwt + 0.7) (7

to fluctuate only with small amplitude. Additional averag-

ing over« will lead to a disappearance of the dc current.with y = 0.005 andw = 1.1. The two symmetry related

To our understanding this should not pose a technical diflimit cycles (z = 1 andm = *1) have been computed

ficulty, since one can take a monochromatic field sourcewith a Newton method (see, e.g., [9]) for = E; = 0,

and then experimentally generate a second harmonic frofii = —2.0. Then the parameters were changed o=

it such that the phase is fixed. 0.02, E; = —2.017, and E, = —0.06051, and the two
The case with dissipation.—Consider now a small but limit cycles were traced again with a Newton method. Fi-

nonzero value of in (1) (see [7]). Generically the phase nally the eigenvalue problens (< 3 matrix) of the lin-

space of the system will separate into basins of attractiofarized phase space flow around each of the cycles has

of low-dimensional attractors. There exist strong hints thaPeen evaluated in order to check the stability (see [9] for

when being close to the Hamiltonian case these attracto@gtails). For the given parameter values #e= —1 cy-

will be periodic orbits or limit cycles (cyclic inX) [8]. cIe_ls stable (all Floqu.et eigenvalues inside the unit circle)

The stochastic layer is transformed into a complex tranWhile them =1 cycle is unstable (one Floquet eigenvalue

sient part in phase space, where the basins of attractidf outside the unit circle). _

of different limit cycles are entangled in a complicated . 10 Observe the effect of asymmetry of basins of attrac-

way. For stronger deviations from the conservative limittion globally, we computed the ensemble averaged velocity

the periodic attractors undergo (period doubling) bifurca—for a distribution of initial conditions in the phase space of

tions, and finally possibly chaotic attractors are generatecf,l) with forces (6) and (7). The distribution was uniform

which are however not directly related to the stochastid”! Xh ar}dtﬁ) (40 poénti 38 thg |tnterval f”’t”f‘ Olltbwhfor
layer of the conservative limit (see also [1]). each of them) an points symmetrically chosen

Of the two symmetries,,, $, in the conservative case on theP axis according to a Maxwell distribution with in-

A . N .~ verse dimensionless temperatyge= 0.01. In total 64 000
only S, may survive for nonzero dissipation. Consider

such a case when (2) holds. Suppose we find a limit Cy’grajectories have been computed. The velocity per trajec-
cle which is characterized by(r + T) = X(t) + 2mm tory averaged over the whole set of trajectories is shown in

Fig. 2 as a function of time for the case withh) symme-
andP(r + T) = P(¢), m € Z. Because of the external g 8 sy

. o - try (curve 1) and the one withodt, symmetry (curve 2).
time-periodic field £(r) we haveT = n2m/w, n € Z.  \ypile the first case gives zero current densityras ,

The average velocit§P) = 7 [; X dt onsuchacyclewill  the second case yields nonzero negative current density in
be given by(P) = wm/n. Because of the required sym- this limit.
metry there will also be a limit cycle wittP) = —wm/n. In order to invert the direction of a nonzero total current
Moreover the symmetry presence also implies that thgue have to apply—f(—X) instead off(X) and —E(r)
basins of attraction of the two symmetry related limit cy-instead ofE(z) in (1). In contrast to the dissipationless
cles are equivalent. A case we cannot just invert time K(z) but have to perform
Assume now that we violat§,. The two cycles pre- a combined transformation both in space and time. Taking
viously related by symmetry to each other will generi-just f(—X) or E(—t) may or may not lead to a change of
cally continue to exist, but there is no obvious symmetrythe current direction. Recall that directed currents can be
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interactions. Applications of similar ideas to coherent
photocurrents in semiconductors have been reported in
@ [15,16]. Further applications may include driven Joseph-
01} ] son junctions or superlattices, electrons in time-dependent
magnetic fields, to name a few. Note that it should
02l ] be much easier to realize experimentally our proposed
symmetry breaking rather than to prepare correlated noise
@ ] as proposed for ratchet transport.
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generated by keepin§f(X) = U(—X) and lowering the

symmetry inE(z) only. In that case the current direction

is inverted by applying-E(z). ) _
There exist a lot of publications on the properties of [1] R-Z. Sagdeev, D.A. Usikov, and G. M. Zaslavskjonlin-

(1) with y = 0 (and similar equations reduced to discrete €& Physics: from the Pendulum to Turbulence and Chaos

maps), however we did not find studies of such a system (Harwood Academic, Chur, Switzerland, 1992).

A A . 2] A.A. Abrik , Fund tals of the Th f Metal
when both symmetrieS, and S, are broken. Evidently, 2] (North_Hr(')"C;Sn%V Ar‘#;g?gm 51388).e oy o S

when takingf and E with only one harmonic, no sym- (3] F G. Bass and A. Bulgakowinetic and Electrodynamic
metry broken transport is possible. The closest study in" ~ phenomena in Classical and Quantum Semiconductor
this respect we found in [10], where however, as explic-  Superlattices (Nova Science Publishing, Commack, NY,
itly stated, the symmetry was kept, leading to zero current  1997).
when averaging over all possible trajectories. The over-[4] Note that (1) can be adequately described by three differen-
damped case was studied in [11]. tial equations of first ordeX = P,P = —yP — f(X) —

Finally we want to discuss the relation of our results _ E(f), and6é = 1. Thus the phase space dimension is three.
to the well-known case of directed currents for particles [3] O- Yevtushenko, S. Flach, and K. Richter (to be published).
moving in so-called ratchet potentials under the influence [8] |- Goychuk and P. lénggi, Europhys. Lett3, 503 (1998).
of friction and a stochastic force (see [12], and referencesl/] This equation has aiso been considered in P. Jung, J.G.
therein). These potentials lack inversion symmetry in Kissner, and P. Bnggi, Phys. Rev. Lett76, 3436 (1996).

: [8] U. Feudel, C. Grebogi, B.R. Hunt, and J. A. Yorke, Phys.

space_and thus lack, symmetry (see above): However Rev. E54, 71 (1996),
the noise process characterizing the stochastic force has tfy) s Flach and C.R. Willis, Phys. Rep95, 181 (1998).
be nonwhite (see [13] for details). It was then found thaf1o] K.N. Alekseev, E.H. Cannon, J.C. McKinney, F.V. Kus-
proper correlations in the noise allow for directed currents ~ martsev, and D.K. Campbell, Phys. Rev. L&0, 2669
even in the presence @f symmetry, i.e., fof nonratchet (1998).
potentials. In [14] these equations have been modified bji1] R. Bartussek, P. #hggi, and J. G. Kissner, Europhys. Lett.
adding time-periodic fields. Note that our model allows 28, 459 (1994).
for an easy treatment of the symmetry analysis, since thE2] |. Zapata, J. tuczka, F. Sols, and P. Hanggi, Phys. Rev.
symmetry breaking is not hidden in higher order moment?13 Lett. 80, 829 (1998). .
of distribution functions. ] J. Luczka, R. Bartussek, and P. Hanggi, Europhys. Béft.

. . 431 (1995).
If we consider corresponding quantum systems, th?14] M.I. Dykman, H. Rabitz, V.N. Smelyanskiy, and B.E
symmetry breaking will be reflected in the properties of ™~ o meister, Phys. Rev. Lett9, 1178 (1997). o
the eigenstates, and nonzero currents can be expected(a§ r. Atanasov, A. Haché, J.L.P. Hughes, H. M. van Driel,
well. The addition of, e.g., particle-particle interaction or and J.E. Sipe, Phys. Rev. LeP6, 1703 (1996).
noise can affect only the amplitude of the current, sincg16] A. Haché, Y. Kostoulas, R. Atanasov, J. L. P. Hughes, J.E.

the broken symmetries cannot be restored by additional  Sipe, and H. M. van Driel, Phys. Rev. LeT8, 306 (1997).

2361



