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Directed Current due to Broken Time-Space Symmetry
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We consider the classical dynamics of a particle in a one-dimensional space-periodic potential U�X� �
U�X 1 2p� under the influence of a time-periodic space-homogeneous external field E�t� � E�t 1 T�.
If E�t� is neither a symmetric function of t nor antisymmetric under time shifts E�t 6 T�2� fi 2E�t�,
an ensemble of trajectories with zero current at t � 0 yields a nonzero finite current as t ! `. We
explain this effect using symmetry considerations and perturbation theory. Finally we add dissipation
(friction) and demonstrate that the resulting set of attractors keeps the broken symmetry property in the
basins of attraction and leads to directed currents as well.

PACS numbers: 05.45.Ac, 05.60.Cd
Transport phenomena are at the heart of many prob-
lems in physics. Nonlinear effects (as well as their quan-
tized counterparts) may lead to many novel results in this
area even for seemingly simple models (see, e.g., [1]).
Well-known applications include the dynamics of Joseph-
son junctions [2] and electronic transport through super-
lattices [3], to name a few. In the bulk of theoretical work
on transport phenomena nonzero dc currents are obtained
by applying time-dependent fields with nonzero mean. It
is normally expected that the opposite case may not lead
to a nonzero dc current. However, it has been also known
for a long time that nonlinear dynamical systems may al-
low for the generation of ac fields from external dc fields
(Josephson effect) and even vice versa [2]. Of course, what
matters is a proper average over initial conditions, so that
one has to ask whether there exist (or do not exist) sets of
solutions which cancel their contribution to the total cur-
rent. This question calls for an analysis of the symmetry
properties of the system under consideration.

Let us make things more precise by considering a
paradigmatic equation of the following type:

Ẍ 1 g �X 1 f�X� 1 E�t� � 0 . (1)

Functions f and E are bounded and periodic with period
2p and T � 2p�v, respectively, and have zero mean, and
max�jf�X�j� � 1. This equation describes, e.g., a particle
moving in a periodic potential U�X� with f�X� � U 0�X�
in one space dimension under the influence of a peri-
odic external field with friction [4]. It also may describe
the current-voltage properties of a small Josephson junc-
tion under the action of a time-periodic external current
(here X becomes the phase difference of the complex order
parameter across the junction). This equation has been
considered by numerous authors, however typically with
harmonic functions f and E. We will show below that this
choice induces symmetries which lead to zero total dc cur-
rent. The purpose of this Letter is to demonstrate that a
proper lowering of the symmetries of even E�t� alone (still
keeping its above defined properties) will lead to a nonzero
dc current.
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Dissipationless case g � 0.—We first consider the
case of zero friction g � 0 in (1). In the limit of large ve-
locities j �Xj ¿ 1, f�X� can be neglected and the solution
X�t� � X0 1 P0t 1

Rt
0 dt0

Rt0

0 E�t00� dt00 has a bounded
first derivative. Thus the time average over the velocity on
a given trajectory is a well-defined nondiverging quantity.

To characterize the relevant symmetries of (1) we have
to consider transformations in X, t which lead to a change
of sign in P. These are (i) a reflection in X ! 2X and a
shift in t or (ii) a shift in X and a reflection in t ! 2t. We
need first to characterize the relevant symmetries of f�X�
and E�t�. For that we expand f and E into a Fourier se-
ries: f�X� �

P
k fkeikX , E�t� �

P
k Ekeivkt . Zero mean

implies f0 � E0 � 0, and reality yields fk � f�
2k , Ek �

E�
2k (A� means complex conjugation). If f�X� � U 0�X�

is antisymmetric after some appropriate argument shift
f�X 1 X � � 2f�2X 1 X � we call f�X� possessing f̂a

symmetry. If E�t� is symmetric after some appropriate
argument shift E�t 1 t� � E�2t 1 t� we call E�t� pos-
sessing Ês symmetry. If E�t� changes sign after a fixed
argument shift (which trivially can be equal only to any
odd multiple of T�2) E�t� � 2E�t 1 T�2�, resulting in
E2k � 0, we call E�t� possessing Êsh symmetry.

Now we can define the two relevant symmetry cases
of (1) called Ŝa and Ŝb below. If functions f�X� and
E�t� possess f̂a and Êsh symmetries, respectively, then
(1) is invariant under symmetry Ŝa: X ! �2X 1 2X �,
t ! t 1 T�2. If function E�t� possesses Ês symmetry,
(1) is invariant under symmetry Ŝb: t ! �2t 1 2t�.

Given a trajectory X�t; X0, P0�, P�t; X0, P0�, with
X�t0; X0, P0� � X0 and P�t0; X0, P0� � P0, the presence
of any of the two symmetries Ŝa, Ŝb allows one to generate
new trajectories given by

Ŝa: 2X�t 1 T�2; X0, P0 1 2X , 2P�t 1 T�2; X0, P0� ,

(2)

Ŝb: X�2t 1 2t; X0, P0�, 2P�2t 1 2t; X0, P0� .

(3)

Note that these transformations change the sign of the
velocity P. Consequently the time average of P on the
© 2000 The American Physical Society
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original trajectory will be opposite to the time average
of P on the generated new trajectories. There can
more symmetry operations generating other trajectorie
but those will not change the sign ofP and are thus not of
interest here.

The dynamical evolution of (1) allows both for
quasiperiodic solutions (cyclic inX for large P0 and
periodic in X for small P0) and chaotic trajectories em-
bedded in a stochastic layer [1]. Assuming that ergodici
holds in the stochastic layer we conclude that the avera
velocity will be one and the same for all trajectories o
the layer. SincêSa and Ŝb when applied to a trajectory
inside the layer generate again trajectories inside the lay
the presence of any of these symmetries implies that t
time-averaged velocity of any trajectory in the layer wil
be zero. Note that we cannot obtain such a conclusion
both symmetries are absent. Indeed in Fig. 1 we sho
the long-time runX�t� for a trajectory in the layer for
several cases with and without symmetriesŜa, Ŝb. While
with Ŝa, Ŝb we find zero average velocities, we observ
that the loss of̂Sa, Ŝb leads to a nonzero average velocit
which is independent of the initial conditions but whos
sign depends on the way the symmetry is broken. T
dynamics is characterized by anomalous transport, i.e.,
Lévy flights of different length interrupted by direction-
changing perturbations. Nonzero current appears due
a desymmetrization between Lévy flights to the left and
right, respectively. Especially trajectory 2 in Fig. 1 yield
a nonzero velocity for a spatially symmetricU�X�.

To answer the question of how to invert the direction o
a nonzero current in the stochastic layer, we note that co
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FIG. 1. DependenceX�t� versust for different realizations of
(1) andg � 0 with f�X� � cosX 1 y2 cos�2X 1 0.4�, E�t� �
E1 sin�vt� 1 E2 sin�2vt 1 0.7� and v � 2.4. (1): y2 � 0,
E1 � 22.3, E2 � 0; (2): y2 � 0, E1 � 22.3, E2 � 21.38;
(3): y2 � 0.6, E1 � 22.3, E2 � 21.38; (4): same as (3) but
with f�2X� instead off�X�. Note that in this case the direction
of the current is not inverted as explained in the text.
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sidering the equation̈X 1 f�X� 1 E�2t� � 0 we arrive
back at (1) by substitutiont0 � 2t. So the current can be
inverted by applyingE�2t� instead ofE�t� in (1). A sec-
ond way is to consider equation̈X 2 f�2X� 2 E�t� � 0
which after substitutionX 0 � 2X again is mapped onto
(1). Thus another way of inverting the current is to app
2f�2X� instead off�X� and2E�t� instead ofE�t� in (1).
There is no simple way to invert the current by just inver
ing space, i.e., by consideringf�2X�.

To get a grasp of this result we consider the quasipe
odic cyclic regime for U�X� � 2 cosX and E�t� �
E1 cosvt 1 E2 cos�2vt 1 a�. Note thatŜa symmetry is
present ifE2 � 0 or E1 � 0 andŜb symmetry is present if
a � 0, p or E1 � 0 or E2 � 0. Each individual trajectory
for sufficiently largeP0 gives a nonzero average velocity
The question is whether we obtain a nonzero velocity af
averaging over initial conditions with some distributio
function r�X0, P0, t0� reflecting equilibrium properties, at
least, of course,r�X0, P0, t0� � r�X0, 2P0, t0�. Here t0
is the time when the trajectories with initial condition
X0, P0 are started. In the simplest case we might assu
that r is independent oft0. Consider the caseP0 ¿ 1
and v ¿ P0. In that case we can separate the soluti
X�t� into a slow partXs�t� and a small fast partj�t�.
Expanding to linear order in the fast variable yields

Ẍs 1 j̈ 2 sinXs 2 cos�Xs�j 1 E�t� � 0 . (4)

Collecting the fast variables we find̈j 2 cos�Xs�j 1

E�t� � 0. This equation has to be solved by assumi
that Xs is constant and skipping the slow homogeneo
solution part. We findj � A1 cosvt 1 A2 cos�2vt 1 a�
with A1 � 2E1��v2 2 cosXs� and A2 � 2E2�
�4v2 2 cosXs�. Final averaging over the fast vari
ables in (4) givesẌs 2 sinXs � 0. The crucial point
is to observe that the initial condition is nowX0 �
Xs�t0� 1 j�t0�, P0 � �Xs�t0� 1 �j�t0�. Since j�t� is a
completely defined function, defining the initial con
ditions for X, P we obtain initial conditions for the
slow variables. The symmetry breaking will be hidde
there. Indeed, averaging over time we find�P�t�� �
� �Xs�t��. Assuming, e.g., large values ofP0 the time-
average velocity of the slow variable will be simpl
� �Xs�t�� � sgn�P0�

p
2Hs �1 2 1��4H2

s � 1 0�P28
0 �� with

2Hs � P2
s 2 2 cosXs. Expanding � �Xs�t�� in powers

of 1�P0 we will encounter termsP26
0

�j3�t0� cos2�X0 2

j�t0��. Averaging overX0 and t0 we obtain in leading
order for the average velocity

2
p

2
25
32

1

P6
0

E2
1E2

v3 sina (5)

which remains nonzero and will contribute to an avera
nonzero current after further averaging overP0. Note that
the directed current disappears ifE1 � 0 or E2 � 0 or
a � 0, p when the mentioned symmetries are restore
The current direction is defined in this perturbation lim
2359
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by the sign of the productE2 sina. Finally in the limit
P0 ! ` the current amplitude tends to zero, although t
symmetries are not restored. The reason is that in t
limit we recover the problem of a free particle movin
under the influence of an external fieldE�t� which can be
easily solved [5]. Averaging overt0 in this case yields zero
total current. It follows that nonzero total currents occ
if symmetriesŜa and Ŝb are violated and if we provide a
mechanism of mixing of different harmonics as it happe
in nonlinear equations of motion (see also [6]).

We checked the above statements of the perturba
theory for the quasiperiodic regime by computing nume
cally the average velocity� �Xs� for two initial conditions
with opposite initial velocities6P0, taking their half sum,
and finally averaging over all possible initial positionsX0
and over the initial timet0. We observe a nonzero curren
except for the symmetric values ofa. Finally we did the
same direct computation in the initial equation (1). Th
results are similar.

In order to keep the dc current nonzero the value ofa

should be kept fixed with time, or at least to be allowe
to fluctuate only with small amplitude. Additional averag
ing overa will lead to a disappearance of the dc curren
To our understanding this should not pose a technical d
ficulty, since one can take a monochromatic field sourc
and then experimentally generate a second harmonic fr
it such that the phasea is fixed.

The case with dissipation.—Consider now a small but
nonzero value ofg in (1) (see [7]). Generically the phas
space of the system will separate into basins of attract
of low-dimensional attractors. There exist strong hints th
when being close to the Hamiltonian case these attrac
will be periodic orbits or limit cycles (cyclic inX) [8].
The stochastic layer is transformed into a complex tra
sient part in phase space, where the basins of attrac
of different limit cycles are entangled in a complicate
way. For stronger deviations from the conservative lim
the periodic attractors undergo (period doubling) bifurc
tions, and finally possibly chaotic attractors are generat
which are however not directly related to the stochas
layer of the conservative limit (see also [1]).

Of the two symmetrieŝSa, Ŝb in the conservative case
only Ŝa may survive for nonzero dissipation. Conside
such a case when (2) holds. Suppose we find a limit c
cle which is characterized byX�t 1 T � � X�t� 1 2pm
and P�t 1 T � � P�t�, m [ Z. Because of the externa
time-periodic fieldE�t� we haveT � n2p�v, n [ Z.
The average velocity�P� �

1
T

RT
0

�X dt on such a cycle will
be given by�P� � vm�n. Because of the required sym
metry there will also be a limit cycle with�P� � 2vm�n.
Moreover the symmetry presence also implies that t
basins of attraction of the two symmetry related limit c
cles are equivalent.

Assume now that we violatêSa. The two cycles pre-
viously related by symmetry to each other will gener
cally continue to exist, but there is no obvious symmet
2360
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which relates them to each other. However after compu
ing the average velocities, we will still find that they equa
each other up to a sign. The symmetry breaking is,
fact, hidden in adesymmetrization of the two basins of at-
traction. It is this asymmetry which after averaging ove
initial condition distributions (symmetric inP) will lead to
a different number of particles attracted to both cycles a
thus to a nonzero current. To observe the desymmetri
tion of the basins locally we may tune some parameter
the equation to such a value that one of the cycles becom
unstable. In that case its basin of attraction shrinks to ze
and disappears. If the other (previously symmetry relate
cycle will still be stable, i.e., if its basin of attraction still
exists, the asymmetry in the basins becomes obvious—one
of them completely disappeared, and the other one still e
ists. We tested these predictions and found complete agr
ment. We used

f�X� � sinX 1 y2 sin�2X 1 0.4� , (6)

E�t� � E1 sinvt 1 E2 sin�2vt 1 0.7� (7)

with g � 0.005 andv � 1.1. The two symmetry related
limit cycles (n � 1 and m � 61) have been computed
with a Newton method (see, e.g., [9]) fory2 � E2 � 0,
E1 � 22.0. Then the parameters were changed toy2 �
0.02, E1 � 22.017, and E2 � 20.06051, and the two
limit cycles were traced again with a Newton method. F
nally the eigenvalue problem (3 3 3 matrix) of the lin-
earized phase space flow around each of the cycles
been evaluated in order to check the stability (see [9] f
details). For the given parameter values them � 21 cy-
cle is stable (all Floquet eigenvalues inside the unit circl
while them � 1 cycle is unstable (one Floquet eigenvalu
is outside the unit circle).

To observe the effect of asymmetry of basins of attra
tion globally, we computed the ensemble averaged veloc
for a distribution of initial conditions in the phase space o
(1) with forces (6) and (7). The distribution was uniform
in X and t0 (40 points on the interval from 0 to2p for
each of them) and2 3 20 points symmetrically chosen
on theP axis according to a Maxwell distribution with in-
verse dimensionless temperatureb � 0.01. In total 64 000
trajectories have been computed. The velocity per traje
tory averaged over the whole set of trajectories is shown
Fig. 2 as a function of time for the case withŜa symme-
try (curve 1) and the one without̂Sa symmetry (curve 2).
While the first case gives zero current density ast ! `,
the second case yields nonzero negative current density
this limit.

In order to invert the direction of a nonzero total curren
we have to apply2f�2X� instead off�X� and 2E�t�
instead ofE�t� in (1). In contrast to the dissipationless
case we cannot just invert time inE�t� but have to perform
a combined transformation both in space and time. Taki
just f�2X� or E�2t� may or may not lead to a change o
the current direction. Recall that directed currents can
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FIG. 2. The averaged velocity (see text) as a function of tim
for (1) with g � 0.1, v � 2.4, and E1 � 25.23. (1): sym-
metric case,y2 � E2 � 0; (2): asymmetric case,y2 � 0.6,
E2 � 25.23.

generated by keepingU�X� � U�2X� and lowering the
symmetry inE�t� only. In that case the current direction
is inverted by applying2E�t�.

There exist a lot of publications on the properties o
(1) with g � 0 (and similar equations reduced to discret
maps), however we did not find studies of such a syste
when both symmetrieŝSa and Ŝb are broken. Evidently,
when takingf and E with only one harmonic, no sym-
metry broken transport is possible. The closest study
this respect we found in [10], where however, as expli
itly stated, the symmetry was kept, leading to zero curre
when averaging over all possible trajectories. The ove
damped case was studied in [11].

Finally we want to discuss the relation of our result
to the well-known case of directed currents for particle
moving in so-called ratchet potentials under the influenc
of friction and a stochastic force (see [12], and referenc
therein). These potentials lack inversion symmetry
space and thus lack̂fa symmetry (see above). Howeve
the noise process characterizing the stochastic force ha
be nonwhite (see [13] for details). It was then found th
proper correlations in the noise allow for directed curren
even in the presence off̂a symmetry, i.e., for“nonratchet”
potentials. In [14] these equations have been modified
adding time-periodic fields. Note that our model allow
for an easy treatment of the symmetry analysis, since t
symmetry breaking is not hidden in higher order momen
of distribution functions.

If we consider corresponding quantum systems, t
symmetry breaking will be reflected in the properties o
the eigenstates, and nonzero currents can be expecte
well. The addition of, e.g., particle-particle interaction o
noise can affect only the amplitude of the current, sinc
the broken symmetries cannot be restored by addition
e
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interactions. Applications of similar ideas to cohere
photocurrents in semiconductors have been reported
[15,16]. Further applications may include driven Josep
son junctions or superlattices, electrons in time-depend
magnetic fields, to name a few. Note that it shou
be much easier to realize experimentally our propos
symmetry breaking rather than to prepare correlated no
as proposed for ratchet transport.
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