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Multi-TeV Scalars are Natural in Minimal Supergravity
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For a top quark mass fixed to its measured value, we find natural regions of minimal supergravity
parameter space where all squarks, sleptons, and heavy Higgs scalars have masses far above 1 TeV and
are possibly beyond the reach of the Large Hadron Collider at CERN. This result is simply understood
in terms of “focus point” renormalization group behavior and holds in any supergravity theory with a
universal scalar mass that is large relative to other supersymmetry breaking parameters. We highlight the
importance of the choice of fundamental parameters for this conclusion and for naturalness discussions
in general.
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The standard model with a fundamental Higgs boson
suffers from a large and unexplained hierarchy between
the weak and Planck scales [1]. Because supersymmetric
theories are free of quadratic divergences, however, this
hierarchy is stabilized in supersymmetric extensions of the
standard model when the scale of superpartner masses is
roughly of the order of the weak scale Mweak [2]. The
promise of providing a natural solution to the gauge hierar-
chy problem is the primary phenomenological motivation
for supersymmetry.

Because the requirement of naturalness places upper
bounds on superpartner masses, this criterion has impor-
tant experimental implications. In a model-independent
analysis, naturalness constraints are weak for some super-
partners, e.g., the squarks and sleptons of the first two gen-
erations [3]. However, in widely studied scenarios where
the scalar masses are unified at some high scale, such as
minimal supergravity, it is commonly assumed that squark
and slepton masses must all be &1 TeV. This bound places
all scalar superpartners within the reach of present and near
future colliders, and is a source of optimism in the search
for supersymmetry at the high-energy and high precision
frontiers. We show here, however, that this assumption is
invalid, and, in fact, it is precisely in supergravity theories
with a universal scalar mass that all squark and slepton
masses may naturally be far above 1 TeV.

Supersymmetric theories are considered natural if the
weak scale is not unusually sensitive to small variations
in the fundamental parameters. Although the criterion of
naturalness is inherently subjective, its importance for
supersymmetry has motivated several groups to provide
quantitative definitions of naturalness [4–12]. In this
analysis, we adopt the following prescription.

(i) We consider the minimal supergravity framework
with its 4 1 1 input parameters

�Pinput� � �m0, M1�2, A0, tanb, sgn�m�� , (1)

where m0, M1�2, and A0 are the universal scalar mass,
gaugino mass, and trilinear coupling, respectively, tanb �
�H0

u���H0
d� is the ratio of Higgs expectation values, and m
0031-9007�00�84(11)�2322(4)$15.00
is the Higgsino mass parameter. The first three parame-
ters are at the grand unified theory (GUT) scale MGUT �
2 3 1016 GeV, i.e., the scale where the U�1�Y and SU(2)
coupling constants meet.

(ii) The naturalness of each point P [ �Pinput� is then
calculated by first determining all the parameters of the
theory (Yukawa couplings, soft supersymmetry breaking
masses, etc.), consistent with low-energy constraints.
Renormalization group (RG) equations are used to relate
high- and low-energy boundary conditions. In particular,
at the weak scale, proper electroweak symmetry breaking
requires
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2Bm � sin2b�m2
Hd

1 m2
Hu

1 2m2� , (3)

where m2
Hu

and m2
Hd

are the soft scalar Higgs masses, and
Bm is the bilinear scalar Higgs coupling. (The tree-level
conditions are displayed here for clarity of presentation. In
all numerical results presented below, we use the full one-
loop Higgs potential [13], minimized at the scale m0�2,
approximately where one-loop corrections are smallest, as
well as two-loop RG equations [14], including all low-
energy thresholds [13,15].)

(iii) We choose to consider the following set of
(GUT scale) parameters to be free, independent, and
fundamental:

�ai� � �m0, M1�2, A0, B0, m0� . (4)

(iv) All observables, including the Z boson mass,
are then reinterpreted as functions of the fundamental
parameters ai , and the sensitivity of the weak scale to
small fractional variations in these parameters is measured
by the sensitivity coefficients [4,5]

ci 	
Ç

≠ lnm2
Z

≠ lnai

Ç
. (5)
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(v) Finally, we form the fine-tuning parameter

c � max�ci� , (6)

which is taken as a measure of the naturalness of point P ,
with large c corresponding to large fine tuning.

As is clear from the description above, several subjective
choices have been made, as they must be in any definition
of naturalness. The choice of minimal supergravity in step
(i), and particularly the assumption of a universal scalar
mass, plays a crucial role. Deviations from this assumption
will be considered below.

The choice of fundamental parameters in step (iii) is
also important and varies throughout the literature. An
appealingly simple choice (see, e.g., Ref. [11]) is �ai� �
�m�, where m is to be evaluated at the weak scale. This
is equivalent to using m2 as a fine-tuning measure, since
Eqs. (2) and (5) imply cm � 4m2�m2

Z . While generally
adequate, this definition is insensitive to large fine tunings
in the function f of Eq. (2), as we will see below; such fine
tunings are accounted for in the more sophisticated choice
of Eq. (4).

The top quark Yukawa Yt (sometimes along with other
standard model parameters, such as the strong coupling) is
included among the fundamental parameters in some stud-
ies [6–8] and not in others [4,9,10]. This choice typically
attracts little comment, and attitudes toward it are at best
ambivalent [5]. This ambiguity reflects, perhaps, a diver-
sity of prejudices concerning the fundamental theory of
flavor. It is important to note, however, that, unlike the
parameters of Eq. (4), Yt is not expected to be related to
supersymmetry breaking and is, in some sense, now mea-
sured, as it is strongly correlated with the top quark mass
mt . For these reasons, we find it reasonable to assume that
in some more fundamental theory Yt is fixed to its mea-
sured value in a flavor sector separate from the supersym-
metry breaking sector, and we therefore do not include it
among the ai . This choice is critical for our conclusions,
as will be discussed below.

In step (v), various other choices are also possible. For
example, the ci may be combined linearly or in quadra-
ture; we follow the most popular convention. In other pre-
scriptions, the ci are combined after first dividing them
by some suitably defined average ci to remove artificial
appearances of fine tuning [7,8]. We have not done this,
but note that such a normalization procedure typically re-
duces the fine-tuning measure and would only strengthen
our conclusions.

Given the prescription for measuring naturalness de-
scribed above, we may now present our results. In Fig. 1,
contours of constant c, along with squark mass contours,
are presented for tanb � 10. Moving from low to high m0,
the contours are determined successively by cm0 , cM1�2 , and
cm0 . The naturalness requirement c , 25 (c , 50) allows
regions of parameter space with m0 
 2 TeV (2.4 TeV).
More importantly, regions with m0 
 2 TeV, where all
squarks and sleptons have masses well above 1 TeV, are
FIG. 1. Contours of constant fine tuning c (solid) and mũL in
GeV (dotted) in the �m0, M1�2� plane for tanb � 10, A0 � 0,
and m . 0. The shaded regions are excluded by the requirement
that the lightest supersymmetric particle be neutral (top left) and
by the chargino mass limit of 90 GeV (bottom and right).

as natural as the region with �m0, M1�2� & (1000 GeV,
400 GeV), where squark masses are below 1 TeV.

The naturalness of multi-TeV m0, though perhaps sur-
prising, may be simply understood as a consequence of a
focus point in the RG behavior of m2

Hu
[16], which renders

its value at Mweak highly insensitive to its value in the ultra-
violet. This insensitivity has been noticed previously in a
different language (see, e.g., Ref. [5]), but the conclusion
that multi-TeV scalars are therefore natural has not been
drawn. Note, however, that, for moderate and large tanb,
Eq. (2) implies that m2

Z is insensitive to m2
Hd

, and so if m2
Hu

is insensitive to ultraviolet boundary conditions, so is m2
Z .

Consider any set of minimal supergravity input parame-
ters. These generate a particular set of RG trajectories,
m2

i jp�t�, Mijp�t�, Ai jp�t�, . . . , where t 	 ln�Q�MGUT� and
Q is the renormalization scale. Now consider another
set of boundary conditions that differs from the first by
shifts in the scalar masses. The new scalar masses m2

i �
m2

i jp 1 dm2
i satisfy the RG equations,

d
dt

m2
i �

1
16p2

∑
2g2M2

1�2 1 Y2A2 1
X
j

Y2m2
j

∏
,

(7)

at one loop, where positive numerical coefficients have
been omitted, and the sum is over all chiral fields fj inter-
acting with fi through the Yukawa coupling Y . However,
because the m2

i jp are already a particular solution to these
RG equations, the deviations dm2

i obey the homogeneous
equations

d
dt

dm2
i �

1
16p2

X
j

Y2 dm2
j . (8)

Such equations are easily solved. Assume for the mo-
ment that the only large Yukawa coupling is Yt , i.e., tanb

is not extremely large. Then dm2
Hu

is determined from
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where Q3 and U3 denote the third generation squark SU(2)
doublet and up-type singlet representations, respectively.
The solution corresponding to the universal initial condi-
tion dm2

0�1, 1, 1�T is2
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For t and Yt such that exp��6�8p2�
Rt

0 Y2
t dt0
 � 1�3,

dm2
Hu

� 0; i.e., m2
Hu

is independent of dm2
0.

The RG evolution of m2
Hu

in minimal supergravity is
shown for several values of m0 in Fig. 2. As expected,
the RG curves exhibit a focus (not a fixed) point, where
m2

Hu
is independent of its ultraviolet value. Remarkably,

however, for the physical top mass of mt 
 175 GeV, the
focus point is very near the weak scale. Thus, the weak
scale value of m2

Hu
and, with it, the fine-tuning parameter

c are highly insensitive to m0. If the particular solution is
natural (say, with all input parameters near the weak scale),
the new solution, even with very large m0, is also natural.

We have also checked numerically that the focus-
ing effect persists even for very large values of tanb.
Indeed, in the limit Yt � Yb ¿ Yt , Eq. (8) can be
similarly solved analytically, and one finds that focusing
occurs for exp��7�8p2�

Rt
0 Y2

t dt0
 � 2�9. For the experi-
mentally preferred range of top masses, the focus point is
again tantalizingly close to Mweak [17].

The naturalness of multi-TeV m0 has important impli-
cations for collider searches. Although m2

Hu
is focused to

the weak scale, all other soft masses remain of order m0.
From Eqs. (8) and (10), we find that, for m0 ¿ M1�2, A0,
the physical masses of squarks, sleptons, and heavy Higgs
scalars are well approximated by

t̃R :
q

1�3 m0, all other q̃, �̃ : m0 .

t̃L, b̃L :
q

2�3 m0, H6, A, H0 : m0 .
(11)

Exact values of mũL are presented in Fig. 1. All squarks,
sleptons, and heavy Higgs scalars may therefore have
masses *1 2 TeV, and may be beyond the reach of the
Large Hadron Collider (LHC) and proposed linear col-
liders. The discovery of such heavy scalars then requires
some even more energetic facility, such as the envisioned
muon or very large hadron colliders.

As may be seen from Fig. 1, however, fine-tuning con-
straints do not allow multi-TeV M1�2. A similar conclusion
applies to m, as may be seen in Fig. 3. We therefore ex-
pect all gauginos and Higgsinos to be within the kinematic
2324
FIG. 2. The RG evolution of m2
Hu for fixed M1�2 � 200 GeV,

A0 � 0, tanb � 10, mt � 175 GeV, and several values of m0

(shown, in GeV). The RG behavior of m2
Hu exhibits a focus

point near the weak scale, where m2
Hu takes its weak scale value

� 2�300 GeV�2, irrespective of m0.

reach of the LHC. Note that some regions of low m are
unnatural. In these regions, large cancellations in the func-
tion f of Eq. (2) occur, and the simple definition c ~ m2

is inadequate.
In addition to the gauginos and Higgsinos, the light-

est Higgs boson is, of course, still required to be light.
Contours of lightest Higgs mass mh are also presented in
Fig. 3. Very heavy top and bottom squarks increase mh

through radiative corrections: for low M1�2, mh increases
by roughly 6 GeV as m0 increases from 500 GeV to 2 TeV.
However, in the multi-TeV m0 scenario, naturalness re-
quires A0 � Mweak (see below), and so left-right squark
mixing is suppressed. The upper bound on mh in Fig. 3 is
thus approximately 120 GeV, well below limits achieved
for TeV squarks with maximal left-right mixing, and within
the �3 5�s discovery range of Higgs searches at the Teva-
tron with luminosity 10 30 fb21 [18].

FIG. 3. Contours of m (solid) and mh (dotted) in GeV for input
parameters as in Fig. 1.
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The focus point analysis presented above (for small Yb)
relied heavily on the universality of the Hu, U3, and Q3
soft masses. It is not hard to show, however, that GUT
scale boundary conditions of the form �m2

Hu
, m2

U3
, m2

Q3
� �

�1, 1 2 x, 1 1 x�, for any x, also exhibit the focus point
behavior. With respect to the other supersymmetry break-
ing parameters, the focus point is fairly robust. The mecha-
nism is independent of all other scalar masses. Also, in the
analysis above, any natural particular solution would do.
Arbitrary and nonuniversal gaugino masses and trilinear
couplings of order Mweak are therefore allowed. (Similarly,
deviations in m2

Hu
, m2

U3
, and m2

Q3
of order M2

weak do not
destabilize the focus point.) Note, however, that multi-TeV
gaugino masses and A parameters are not allowed. The
required hierarchy between the scalar masses and the gaug-
ino mass, A, and m parameters may result from an approxi-
mate U�1�R1PQ symmetry or from the absence of singlet
F terms [19]. Bm may also be suppressed by such a sym-
metry, and so leads to an experimentally viable scenario
with naturally large tanb 
 m2

Hd
��Bm�, which is typically

difficult to realize [20].
Although the focus point mechanism depends on a re-

lation between mt and ln�MGUT�Mweak�, it is not extraor-
dinarily sensitive to these values. The focus point is still
near the weak scale if mt is varied within its experimen-
tal uncertainty of 5 GeV, and, in fact, natural regions with
multi-TeV m0 are also possible if the high scale is raised
to �1018 GeV [17].

We stress, however, that, if Yt is included among the
free and fundamental parameters, multi-TeV m0 would
be considered unnatural. For example, for tanb � 10
and A0 � 0, cYt , 25 (50) corresponds to m0 & 500 GeV
(800 GeV) [17]. We have presented above our rationale for
not including Yt among the ai , although a definitive reso-
lution of this issue most likely requires an understanding
of the fundamental theory of flavor.

In conclusion, for moderate and large tanb, multi-TeV
scalars are natural in minimal supergravity. (For small
tanb & 5, multi-TeV scalars are unnatural, both because
the focus point differs significantly from the weak scale
and because mZ becomes sensitive to mHd .) In view of
this result, the discovery of squarks, sleptons, and heavy
Higgs scalars may be extremely challenging even at the
LHC. In addition, it is not surprising that these scalars
have so far escaped detection, as present bounds are far
from excluding most of the natural parameter space. Fi-
nally, it is tempting to speculate that what appears to be
an accidental conspiracy between mt and the ratio of high
to weak scales may find some fundamental explanation. If
gauginos and Higgsinos are discovered, but all supersym-
metric scalars escape detection at the LHC, the preserva-
tion of the naturalness motivation for supersymmetry, as
currently understood, will require either an explanation of
large cancellations between supersymmetry breaking soft
masses at the weak scale, or the above scenario with a top
mass fixed to be near 175 GeV. The latter possibility is,
in our view, far more compelling and is supported by ex-
perimental data.
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