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Massive spin-1�2 fields are studied in the framework of loop quantum gravity by considering a state
approximating, at a length scale L much greater than Planck length �P , a spin-1�2 field in flat spacetime.
The discrete structure of spacetime at �P yields corrections to the field propagation at scale L . Neutrino
bursts ( p̄ � 105 GeV) accompanying gamma ray bursts that have traveled cosmological distances L
are considered. The dominant correction is helicity independent and leads to a time delay of order
� p̄�P�L�c � 104 s. To next order in p̄�P , the correction has the form of the Gambini and Pullin effect
for photons. A dependence L21

os ~ p̄2�P is found for a two-flavor neutrino oscillation length.

PACS numbers: 04.60.Ds, 14.60.Pq, 96.40.Tv, 98.70.Rz
The fact that some gamma ray bursts (GRB) origi-
nate at cosmological distances (�1010 light years� [1],
together with time resolutions down to submillisecond
scale achieved in recent GRB data [2], suggests that it is
possible to probe fundamental laws of physics at energy
scales near to Planck energy EP � 1.3 3 1019 GeV
[3,4]. Furthermore, sensitivity will be improved with
HEGRA and Whipple air Cherenkov telescopes and by
AMS and GLAST spatial experiments. Thus, quantum
gravity effects could be at the edge of observability [3,4].
Now, quantum gravity theories imply different spacetime
structures [4,5] and it can be expected that what we
consider flat spacetime can actually involve dispersive
effects arising from Planck scale lengths. Such tiny effects
might become observable upon accumulation over travels
through cosmological distances by energetically enough
particles like cosmological GRB photons.

The most widely accepted model of GRB, the
so-called fireball model, predicts also the generation of
1014 1019 eV neutrino bursts (NB) [6,7]. Yet, another
GRB model based on cosmic strings requires neutrino pro-
duction [8]. Present experiments to observe high energy
astrophysical neutrinos such as AMANDA, NESTOR,
Baikal, ANTARES, and Super-Kamiokande, for example,
will detect at best only one or two neutrinos in coinci-
dence with GRB’s per year. The planned neutrino burster
experiment (NuBE) will measure the flux of ultrahigh
energy neutrinos (.10 TeV) over a �1 km2 effective
area, in coincidence with satellite measured GRB’s [9]. It
is expected to detect �20 events per year, according to
the fireball model. Hence, one can study quantum gravity
effects on astrophysical neutrinos that might be observed
or, the other way around, such observations could be used
to restrict quantum gravity theories.

In this Letter, the loop quantum gravity framework is
adopted. In this context, Gambini and Pullin studied light
propagation semiclassically [10]. They found, besides
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departures from perfect nondispersiveness of ordinary
vacuum, helicity depending corrections for propagating
waves. In the present work, the case of massive spin-1�2
particles in loop quantum gravity is studied also semiclas-
sically. They could be identified with the neutrinos that
would be produced in GRB. Central ideas and results are
presented, whereas details will appear elsewhere [11].

Loop quantum gravity [5] uses a spin networks basis,
labeled by graphs embedded in a three dimensional space
S. Physical predictions hereby obtained are a “polymer-
like” structure of space [12] and a possible explanation of
black hole entropy [13]. A first attempt to couple spin-1�2
fields to gravity, along these lines, was made in [14], and
a generalization to the spin networks basis has been devel-
oped in [15]. A significant progress in the loop approach to
quantum gravity was made by Thiemann, who put forward
a consistent regularization procedure to properly define the
quantum Hamiltonian constraint of the full theory, which
includes the Einstein plus matter (leptons, quarks, Higgs
particles) contributions [16]. It is based on a triangulation
of space with tetrahedra whose sides are of the order of
�P . The cornerstone of Thiemann’s proposal is the incor-
poration of the volume operator as a convenient regulator,
since its action upon states is finite. Having at our disposal
a regularized version of the quantum Hamiltonian describ-
ing fermions coupled to Einstein gravity, we will further
need a loop state which approximates a flat 3-metric on S,
at scales L much larger than the Planck length. For pure
gravity this state is called weave [17]. A flat weave jW �
is characterized by a length scale L ¿ �P , such that for
distances d $ L the continuous flat classical geometry is
regained, while for distances d ø L the quantum loop
structure of space is manifest. The stronger the inequal-
ity d ¿ �P holds, the more isotropic and homogeneous
the weave looks. For example, the metric operator ĝab
satisfies �W jĝabjW � � dab 1 O � �P

L �. Now, a generaliza-
tion of such an idea to include matter fields is required.
© 2000 The American Physical Society
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For our analysis it suffices to exploit the main features that
a flat weave with fermions must have: in particular, it must
reproduce the Dirac equation in flat spacetime, and this is
just the basis of our approximation scheme. It is denoted
by jW ,j�, has a characteristic length L , and is referred to
simply as a weave.

The use of Thiemann’s regularization for Einstein Dirac
theory naturally allows the semiclassical treatment here
pursued; expectation values with respect to jW ,j� are con-
sidered thereby. They are expanded around relevant ver-
tices of the triangulation and a systematic approximation
is given involving the scales �P ø lD ø lC , the last two
corresponding to, respectively, De Broglie and Compton
wavelengths of a light fermion. Corrections come out at
this level.

The Hamiltonian constraint for a spin-1�2 field coupled
to gravity consists of a pure gravity contribution, a kinetic
fermion term, namely,
H �1� :�
Z
d3x

Eai
2
p

det�g�
�ipTtiDaj 1 c.c.� , (1)

and other terms [16] whose contribution is summarized
in (7) below. Their analysis is an extension of the one
for H�1� given here and will be spelled out in [11]. We
use �t � 2

i
2 �s, the latter being the standard Pauli ma-

trices. The fermion field is a Grassmann valued Majo-
rana spinor CT � ���cT , �2is2c��T ���. The two component
spinor c has definite chirality and it is a scalar under gen-
eral coordinate transformations. Hence, (1) is not parity
invariant. The configuration variable is j � �det�q�	1�4c,
which is a half density. The corresponding momentum is,
with this choice, p � ij�; similarly as in flat space. The
gravitational canonical pair consists of Eai and the SU�2�-
connection A

j
b (D ), where �detg�gab � Eai Eib .

Upon regularization [16], the expectation value of (1)
with respect to the weave becomes
�W ,jjĤ�1�jW ,j� � 2
h̄

4�4
P

X
y[V �g�

8
E�y�

eijk
X

sI>sJ>sK�y

eIJK

3

Ω
�W ,jjĵB�y 1 sK �D�	

≠

≠jA�y�
�tkhsK �D�	ABŵiID�y�ŵjJD�y� jW ,j�

2 �W ,jj�tkĵ�A�y�
≠

≠jA�y�
ŵiID�y�ŵjJD�y� jW ,j� 2 c.c.

æ
. (2)
Here an adapted triangulation of S to the graph g of the
weave state jW ,j� is adopted. Auxiliary quantities used
are ŵkID � Tr�tkhsI �D��h21

sI �D�,
p
Vy	�, where Vy is the vol-

ume operator restricted to act upon vertex y. hs�D� are
holonomies along segments, s, of edges forming tetrahedra
in the triangulation D [16]. V �g� stands for the set of ver-
tices of g. The second sum,

P
sI>sJ>sK�y , involves triples

of segments sI , sJ , sK intersecting at y. Notice that one ac-
tually averages over E�y� � ny�ny 2 1� �ny 2 2��6 pos-
sible triangulations (one for each triple of edges) when the
vertex y is reached by ny edges (the valence) of the graph.

To estimate (2) we associate to it c-number quantities
respecting the index structure, together with appropriate
scale factors arising from dimensional reasons and, most
important, in line with the weave state approximating flat
space with fermions. This amounts to an expansion of ex-
pectation values around vertices of the weave. The explicit
form is taken from the expansion the involved operators
would have in powers of the segments sa, jsaj � �P , a pro-
cedure justified for weave states. Useful quantities coming
in by expanding ŵiID�y� � saI ŵia 1 saI s

b
I ŵiab 1 . . . , for

instance, are

ŵia �
1
2

�Aia,
p
Vy	, ŵiab �

1
8
eikl���Aka, �Alb ,

p
Vy				 ,

(3)

whose contribution to the average in the weave is
estimated by considering that of Aia and

p
Vy to be of the

order of �1�L and ��
3�2
P , respectively. To proceed with
the approximation we think of space as being made up of
boxes of volume L 3, whose center is denoted by �x. Each
box contains a large number of vertices of the weave, but
is considered infinitesimal in the scale where the
space can be regarded as continuous, so that we take
L 3 � d3x. Let F̂�y� be a fermionic operator which
produces the slowly varying (inside the box) function
F� �x�, i.e., L ø lD . Also let 1

�3
P
Ĝ�y� be a gravitational

operator with average within the box G� �x�. The weave is
such that

P
y[V �g�

8
E�y� �W ,jjF̂�y�Ĝ�y�jW ,j� �P

Box��x� F� �x�
P
y[Box� �x� �3

P
8

E�y� �W ,jj 1
�3
P
Ĝ�y�jW ,j� �R

S d
3x F� �x�G� �x�. Notice that the tensorial and

Lie-algebra structure should come out from flat spacetime
quantities exclusively, i.e., 0Eia, tk , ≠b , ecde, eklm, where
dab � 0Eia 0Ebi .

In order to regain the flat spacetime kinetic term of the
fermion Hamiltonian, we demand jW ,j� to fulfill

�W ,jjĵB�y�
≠

≠jA�y�
�tkD �j�

c �ABŵia�y�ŵjb�y�jW ,j�

�
∑
i
h̄
jB�y�pA�y��PL 2

∏

3

∑
�3
P

L 2 �tk≠�j�
c �AB 0Eia�y� 0Ejb�y�

∏
. (4)

The second parenthesis here dictates the overall structure:

(3) indicates that each ŵia�y� contributes a factor of �
3�2
P

L ,
since the connection scales with 1�L (large length limit
2319
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) flat spacetime), and
p
Vy contributes a factor of �

3�2
P .

Independence on L of the final form of (4) gives the
structure of the first parenthesis. The notation �j� stands
for acting only upon j. By expanding (2) at different
orders in powers of s and using (4), one can systematically
determine all possible contributions. Some examples of
correction terms are

i
4
L 2

�3
P

X
y[V �g�

8
E�y�

eijkeIJKsaI s
b
I s
c
Js
d
KpA�y�≠djB�y�

3 �W ,jj�tk�AB
ŵiab , ŵjc� jW ,j�

! k5
�P
L

Z
d3x

i
2
p� �x�tk 0Ekd≠dj� �x� , (5)
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P

X
y[V �g�

8
E�y�

eijkeIJK
1
3!
saKs

b
Ks

c
Ks

d
I s
e
J

3 p�y�tk≠a≠b≠cj�y� �W ,jjŵid�y�ŵje�y� jW ,j�

! 2ik8�2
P

Z
d3x p� �x�tk 0Ekc≠c=

2j� �x� . (6)

A similar treatment can be performed for every contri-
bution to the Einstein-Dirac Hamiltonian constraint [11].
It is important to stress that the prediction of the values of
the corresponding coefficients ki would require a precise
definition of the flat weave (or even better, a Friedman-
Lemaitre-Robertson-Walker weave), together with a de-
tailed calculation of the matrix elements. Instead, within
the present approach, the neutrino equation, up to order �2

P ,
becomes
∑

ih̄
≠

≠t
2 ih̄Â �s ? = 1

Ĉ
2L

∏
j�t, �x� 1 m�a 2 bih̄ �s ? =�is2j

��t, �x� � 0,

Â �

∑
1 1 k1

�P
L

1 k2

µ
�P
L

∂2

1
k3

2
�2
P=

2

∏
, a �

µ
1 1 k8

�P
L

∂
, (7)

Ĉ � h̄

∑
k4 1 k5

�P
L

1 k6

µ
�P
L

∂2

1
k7

2
�2
P=

2

∏
, b �

k9

2h̄
�P .
Notice that k4 would produce an additional Dirac mass
for the neutrino. Since we are considering particles with
a Majorana mass m, we take k4 � 0. In contrast to [10],
we have found no additional parity violation arising from
the structure of the weave. The dispersion relation corre-
sponding to (7) is

E2
6�p,L � � �A2 1 m2b2�p2 1 m2a2

1

µ
C

2L

∂2

6 Bp,

B � A

µ
C

L
1 2abm2

∂
, (8)

where A,B,C have been expressed in momentum space
and depend on L . The6 in Eq. (8) stands for the two neu-
trino helicities. Let us emphasize that the solution j�t, �x�
to Eq. (7) is given by an appropriate linear combination of
plane waves and helicity eigenstates, given that the neutri-
nos considered are massive.

Typically, for neutrinos, lD ø lC and our approxima-
tion is meaningful only if L # lD . In this way we make
sure that Eq. (7) is defined in a continuous flat space-
time. From here on, h̄ � c � 1. To estimate the correc-
tions let us consider a massive neutrino with momentum
�p � �̄p. A lower bound for them is obtained by taking
1�L � 1�lD � j �̄pj � p̄. Up to leading order in �2

P , we
get

E6�p̄� :� E6�p,L �jp�p̄,L �1�p̄ � p̄ 1
m2

2p̄
1 �P��u2 6 u4�p̄2 1 �u1 6 u3�m2	

1 �u5 6 u6��2
Pp̄

3, (9)

where we are assuming that all ui are numerical quantities
of order 1. Besides, these are known functions of the
original parameters ki [11]. To leading order in p̄, the
velocities are

y6� p̄� �
≠E6�p,L �

≠p
jp�p̄,L �1�p̄

� 1 2
m2

2p̄2 1 k1��Pp̄� 7 k7
��Pp̄�2

2
. (10)

The order of magnitude of the corrections arising from the
present analysis is calculated using the following values:
m � 1029 GeV, p̄ � 105 GeV, L � 1010 light years �
0.5 3 1042 1

GeV (distance traveled by the neutrino from
emission to detection on Earth). Let us observe that in
Eq. (9) the ratio between second and first order contribu-
tions in �P behaves like �p̄�P� � 10214. Now consider the
gravitationally induced time delay of neutrinos traveling at
velocities y6 with respect to those traveling at the speed
of light: Dtn � jL�1 2 y6�j � jk1jL� p̄�P�. Notice that
this expression, though helicity independent, is of the same
form as the one in Ref. [10] for photons. In our case we
obtain Dtn � 0.3jk1j 3 104 s. Besides, this correction
dominates over the delay due to the mass term m2

2p̄2 which
is �10210 s. The second interesting parameter is the time
delay of arrival for two neutrinos having different helici-
ties: Dt6 � Lj�y1 2 y2�j � jk7jL�p̄�P�2 � 1.5jk7j 3
10211 s. This correction is suppressed by a factor of � p̄�P�
with respect to the former and it is comparable to the time
delay caused by the mass term. Finally, consider the char-
acteristic length Los corresponding to two-flavor neutrino
oscillations, given by Los �

2p
�Ea2Eb� � 2p

DE , where Ea,b de-
notes the energy corresponding to the mass eigenstates of
the neutrinos with masses ma,b , respectively. As usual, we
assume that neutrinos are highly relativistic (p̄a ¿ ma)
and also that p̄a � p̄b � p̄ � E. The phase Fos describ-
ing the oscillation is Fos �

pL
Los

, where L is the distance
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traveled by the neutrino between emission and detection.
The energy difference for the corresponding two flavors is

DE �
Dm2

2p̄
1 Dr1p̄

2�P 1 D�r2m
2��P

� �10226 1 Dr1 3 1029 1 10240� GeV . (11)

This result could yield bounds upon Dr1, which measures
a violation of universality in the gravitational coupling
for different neutrino flavors. For the above estimation,
Dm2 � 10221 GeV2, and D�r2m2� � Dm2 were used.
Here ri are flavor dependent quantities of the order of
1. To conclude, we notice that (11) implies L21

os ~ p̄2�P ,
seemingly an effect not considered previously [18].
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