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Massive spin-1/2 fields are studied in the framework of loop quantum gravity by considering a state
approximating, at alength scale £ much greater than Planck length €p, aspin-1/2 field in flat spacetime.
The discrete structure of spacetime at €p yields corrections to the field propagation at scale £ . Neutrino
bursts (p = 10° GeV) accompanying gamma ray bursts that have traveled cosmological distances L
are considered. The dominant correction is helicity independent and leads to a time delay of order
(p€p)L/c = 10* s. To next order in p{p, the correction has the form of the Gambini and Pullin effect
for photons. A dependence L.! « p?¢p isfound for a two-flavor neutrino oscillation length.
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The fact that some gamma ray bursts (GRB) origi-
nate at cosmological distances (=10'° light years) [1],
together with time resolutions down to submillisecond
scale achieved in recent GRB data [2], suggests that it is
possible to probe fundamental laws of physics at energy
scales near to Planck energy Ep = 1.3 X 10" GeV
[3,4]. Furthermore, sensitivity will be improved with
HEGRA and Whipple air Cherenkov telescopes and by
AMS and GLAST spatial experiments. Thus, quantum
gravity effects could be at the edge of observability [3,4].
Now, quantum gravity theories imply different spacetime
structures [4,5] and it can be expected that what we
consider flat spacetime can actualy involve dispersive
effects arising from Planck scale lengths. Such tiny effects
might become observable upon accumulation over travels
through cosmological distances by energetically enough
particles like cosmological GRB photons.

The most widely accepted model of GRB, the
so-called fireball model, predicts aso the generation of
10'4-10'" eV neutrino bursts (NB) [6,7]. Yet, another
GRB model based on cosmic strings requires neutrino pro-
duction [8]. Present experiments to observe high energy
astrophysical neutrinos such as AMANDA, NESTOR,
Baikal, ANTARES, and Super-Kamiokande, for example,
will detect at best only one or two neutrinos in coinci-
dence with GRB'’s per year. The planned neutrino burster
experiment (NUBE) will measure the flux of ultrahigh
energy neutrinos (>10 TeV) over a ~1 km? effective
area, in coincidence with satellite measured GRB’s [9]. It
is expected to detect =20 events per year, according to
the fireball model. Hence, one can study quantum gravity
effects on astrophysical neutrinos that might be observed
or, the other way around, such observations could be used
to restrict quantum gravity theories.

In this Letter, the loop quantum gravity framework is
adopted. In this context, Gambini and Pullin studied light
propagation semiclassically [10]. They found, besides
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departures from perfect nondispersiveness of ordinary
vacuum, helicity depending corrections for propagating
waves. In the present work, the case of massive spin-1/2
particles in loop quantum gravity is studied also semiclas-
sically. They could be identified with the neutrinos that
would be produced in GRB. Central ideas and results are
presented, whereas details will appear elsewhere [11].
Loop quantum gravity [5] uses a spin networks basis,
labeled by graphs embedded in a three dimensional space
.. Physical predictions hereby obtained are a “polymer-
like” structure of space [12] and a possible explanation of
black hole entropy [13]. A first attempt to couple spin-1/2
fields to gravity, along these lines, was made in [14], and
ageneralization to the spin networks basis has been devel-
opedin[15]. A significant progressin the loop approachto
guantum gravity was made by Thiemann, who put forward
aconsistent regularization procedure to properly define the
guantum Hamiltonian constraint of the full theory, which
includes the Einstein plus matter (Ieptons, quarks, Higgs
particles) contributions [16]. It is based on atriangulation
of space with tetrahedra whose sides are of the order of
€p. The cornerstone of Thiemann’s proposal is the incor-
poration of the volume operator as a convenient regulator,
sinceits action upon statesis finite. Having at our disposal
aregularized version of the quantum Hamiltonian describ-
ing fermions coupled to Einstein gravity, we will further
need aloop state which approximates a flat 3-metric on 3,
at scales £ much larger than the Planck length. For pure
gravity this state is called weave [17]. A flat weave |W)
is characterized by a length scale £ > €p, such that for
distances d = L the continuous flat classical geometry is
regained, while for distances d < £ the quantum loop
structure of space is manifest. The stronger the inequal-
ity d > {p holds, the more isotropic and homogeneous
the weave looks. For example, the metric operator g,
satisfies (W2 |W) = 84 + Cf)(‘z—"). Now, a generaliza-
tion of such an idea to include matter fields is required.
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For our analysisit suffices to exploit the main features that a ._ 3 E} T
aflat weave with fermions must have: in particular, it must B = ] d’x 2,/det(g) (m 7 Daé +cc). (1)
reproduce the Dirac eguation in flat spacetime, and thisis S ]
just the basis of our approximation scheme. It is denoted ~ @d Other terms [16] whose contribution is summarized
by |W, &), has a characterigtic length £, and isreferred to 1N (7) below. Their analysis is an extension of the one
simply as a weave. for H given here and will be spelled out in [11]. We
The use of Thiemann's regularization for Einstein Dirac ~ USe 7 = —3 &, the latter being the standard Pauli ma-
theory naturally allows the semiclassical treatment here  trices. The fermion field is a Grassmann valued Mgjo-
pursued; expectation values with respect to |W, &) arecon-  ranaspinor W7 = (y7, (—io?y*)"). The two component
sidered thereby. They are expanded around relevant ver- ~ Spinor ¢ has definite chirality and it is a scalar under gen-
tices of the triangulation and a systematic approximation ~ €ra coordinate transformations. Hence, (1) is not parity
isgiven involving the scales € < Ap << Ac, thelasttwo  invariant. The configuration variableis ¢ = [det(¢)]'/*y,
corresponding to, respectively, De Broglie and Compton ~ Which is a half density. The corresponding momentum is,
wavelengths of a light fermion. Corrections come out at ~ With this choice, 7 = i¢™; similarly asin flat space. The

this level. gravitational canonical pair consists of E;' and the SU(2)-
The Hamiltonian constraint for aspin-1/2 field coupled  connection A}, (D), where (detg)g®” = ESE™.

to gravity consists of a pure gravity contribution, a kinetic Upon regularization [16], the expectation value of (1)

fermion term, namely, with respect to the weave becomes

|
£r(1) _ h 8 ijk IJK
W, ElHD|W, &) = ~ > ety e

o
4€P vEV(y) E(U) siNsyNsx=v

X {(W,§|§B[U + SK(A)]%[Tkhs,((A)]ABWiIA(U)WjJA(U) (W, &)
— W £l ) s s 0)s ) W ) = cof. @

Here an adapted triangulation of %, to the graph y of the | the approximation we think of space as being made up of
weave state |W, &) is adopted. Auxiliary quantities used  boxes of volume £ 3, whose center is denoted by x. Each
areWwia = Tr(rihg,a)lhy, (IA), VvV, 1), where V, isthevol-  box contains a large number of vertices of the weave, but
ume operator restricted to act upon vertex v. hyna) ae is considered infinitesmal in the scale where the
holonomies along segments, s, of edgesforming tetrahedra  space can be regarded as continuous, so that we take
in the triangulation A [16]. V(y) stands for theset of ver- L3 = d°x. Let F(v) be a fermionic operator which
tices of y. The second sum, > ~,,ns, .. iNVolvestriples  produces the slowly varying (inside the box) function
of segmentss;, s;, sk intersecting at v. Noticethat oneac-  F(%), i.e, L < Ap. Also let %(A}(v) be a gravitational
;galggvaﬁrgaﬁ;i g\rg(oErgg;oT ;m; pTe Qf (gdjge_s) %/\)/{1 6enp?rf; operator with average withi nsthepbox G(%). The weave is
vertex v is reached by n, edges (the valence) of the graph. such th?t Z”EV(7)3 E@) W, §|F(1v)§(v)|W, &) =
To estimate (2) we associate to it c-number quantities 2Box) F(¥) 2Zoepox) P 7wy (Wi flé G)IW, &) =
respecting the index structure, together with appropriate [y dx F(¥)G (). Notice that the tensorial and
scale factors arising from dimensional reasons and, most ~ Lie-algebra structure should come out from flat spacetime
important, in line with the weave state approximating flat ~ quantities exclusively, i.e., °E™, 7%, 9,, e<4¢, e"'™, where
space with fermions. This amounts to an expansion of ex- ~ §9 = 0gia0g?,
pectation values around vertices of the weave. The explicit In order to regain the flat spacetime kinetic term of the
form is taken from the expansion the involved operators ~ fermion Hamiltonian, we demand |W, &) to fulfill
would havein powers of the sesgments s¢, |s*| ~ £p, apro-

pedurejustlflgdftzr weavestai;as; Usefu!l q;J?ntltleﬁcommg (W, £1&p(v) —— (7 ch(g))Ame(v)wjb(v)IW, £)
in by expanding wiia(v) = sfWiq + s¥siWiap + ..., for dEA(v)
instance, are i 5
1 1 ~ | em@e L]
Wiq = 5 [Aias Vo], Wiap = g €l Aras [An, NV 11, e
6 % | (P OB ) B )| (@

whose contribution to the average in the weave is  Thesecond parenthesis here dictates the overall structure:

3/2

estimated by consider in%/tzhat of A, and \/V, tobeof the  (3) indicates that each W, (v) contributes a factor of -,
order of ~1/L and ~€p ~, respectively. To proceed with  since the connection scales with 1/ L (large length limit

2319




VOLUME 84, NUMBER 11

PHYSICAL REVIEW LETTERS

13 MARcH 2000

= flat spacetime), and /V,, contributes a factor of 6139/ 2,
Independence on £ of the fina form of (4) gives the
structure of the first parenthesis. The notation (¢) stands
for acting only upon ¢. By expanding (2) at different
ordersin powers of s and using (4), one can systematically
determine all possible contributions. Some examples of
correction terms are

i ‘£2 8 ijk 1JK ,a b .c_d
- Z —— €M e sis]sGskma(v)d €5 (V)
4 Cp vEV(y) E(v)

X <W’ fl(Tk)AB{Wiab’ W]c} |W9 §>
_tp

i 5 >
— K5 — d3x 3 7 (X) Tk OEkdadf(X), (5)

A

i L? 8 . 1

_ § jk _1JK a b c .d_e
3 € € SKSKSKSISJ

4 O» veViy) E(v) 3!

X (v)Trdq0p0E(W) W, EWig(V)Wje (V) W, &)

dx (@)1 CEF 0.V E(R). (6)

A similar treatment can be performed for every contri-
bution to the Einstein-Dirac Hamiltonian constraint [11].
It isimportant to stress that the prediction of the values of
the corresponding coefficients «; would require a precise
definition of the flat weave (or even better, a Friedman-
Lemaitre-Robertson-Walker weave), together with a de-
tailed calculation of the matrix elements. Instead, within
the present approach, the neutrino equation, up to order £3,
becomes

— —i73€%

. a . ~ > C -> . - . F3 > _
|:zﬁ o iAo -V + 5T }f(r,x) + m(a — Bikho - V)io£7(t,x) = 0,

L

Az[l

2
+ K1€—P + K2<€—P> + %€%V2}, a = <1 + kg €—P>,

(7)

L L

R ¢ 2%
C = ﬁ|:K4 + Ksl + K6<l> + %€%V2:|, B = %ep

L

L

Notice that x4, would produce an additional Dirac mass | original parameters «; [11]. To leading order in p, the

for the neutrino. Since we are considering particles with
a Majorana mass m, we take x4 = 0. In contrast to [10],
we have found no additional parity violation arising from
the structure of the weave. The dispersion relation corre-
sponding to (7) is

Ex(p, L) = (A + m*BY)p? + ma’

C 2
- +
" (2_5 ) = Bp,
c 2
B = A<f + 2aBm ) (8)
where A, B, C have been expressed in momentum space
and dependon £ . The = in Eq. (8) standsfor the two neu-
trino helicities. Let us emphasize that the solution £(z, x)
to Eq. (7) isgiven by an appropriate linear combination of
plane waves and helicity eigenstates, given that the neutri-
nos considered are massive.

Typicaly, for neutrinos, Ap << A¢ and our approxima-
tion is meaningful only if £ = Ap. Inthisway we make
sure that Eq. (7) is defined in a continuous flat space-
time. From hereon, i = ¢ = 1. To estimate the correc-
tions let us consider a massive neutrino with momentum
p = p. A lower bound for them is obtained by taking
1/L£ = 1/Ap = |p| = p. Uptoleading order in €3, we
get

m2
E-(p) = E«(p, L)p=pc=1/p = P + E
+ €p[(62 * 04)p° + (01 = 03)m’]

+ (05 = 06)03p°, 9)

where we are assuming that al 6; are numerical quantities
of order 1. Besides, these are known functions of the
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velocities are
_ dE+(p, L)
v=(p) = Tlp:ﬁ,ﬁzl/ﬁ
m? (€pp)?
=1-—+ p) F k1 ———. (1
257 k1(€pp) + K7 > (10)

The order of magnitude of the corrections arising from the
present analysis is calculated using the following values:
m=10"° GeV, p ~ 10° GeV, L = 10" light years =
0.5 X 10* va (distance traveled by the neutrino from
emission to detection on Earth). Let us observe that in
Eq. (9) the ratio between second and first order contribu-
tionsin €p behaveslike (p€p) =~ 10~ '*. Now consider the
gravitationally induced time delay of neutrinos traveling at
velocities v+ with respect to those traveling at the speed
of light: Az, = |L(1 — v+)| = |ki|L(p£€p). Notice that
this expression, though helicity independent, is of the same
form as the one in Ref. [10] for photons. In our case we
obtain A7, = 0.3]i| X 10* s. Besides, this correction
dominates over the delay due to the mass term % which
is~10"10 s. The second interesting parameter is the time
delay of arrival for two neutrinos having different helici-
tleS A[i = L|(v+ - U-)l = |K7|L([_)€p)2 =~ 15|K7| X
10~ s, Thiscorrection is suppressed by afactor of (p€p)
with respect to the former and it is comparable to the time
delay caused by the mass term. Finally, consider the char-
acteristic length L, corresponding to two-flavor neutrino
oscillations, givenby Lo = % = Z—Z,whereEa,b de-
notes the energy corresponding to the mass eigenstates of
the neutrinos with masses m,, ;,, respectively. Asusua, we
assume that neutrinos are highly relativistic (p, > m,)
and also that p, ~ p, = p ~ E. The phase ®,, describ-
ing the oscillation is &, = Z—L where L is the distance
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traveled by the neutrino between emission and detection.
The energy difference for the corresponding two flavorsis

A 2
AE = 2l + Ap1p2p + A(pym?)ep
P

~ (1072 + Ap; X 1072 + 107%) GeV. (11)

This result could yield bounds upon A p, which measures
a violation of universality in the gravitational coupling
for different neutrino flavors. For the above estimation,
Am? =~ 1072! GeV?, and A(pom?) = Am?* were used.
Here p; are flavor dependent quantities of the order of
1. To conclude, we notice that (11) implies L_;! « p2€p,
seemingly an effect not considered previously [18].
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