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We present a quantization of the Hamiltonian and diffeomorphism constraint of canonical quantum
gravity in the spin network representation. The novelty consists in considering a space of wave functions
based on the Vassiliev invariants. The constraints are finite, well defined, and reproduce at the level of
quantum commutators the Poisson algebra of constraints of the classical theory. A similar construction
can be carried out in 2 1 1 dimensions leading to the correct quantum theory.

PACS numbers: 04.60.Ds, 02.40.Hw
The Ashtekar new variables [1] describe general rela-
tivity as a theory of a connection, having the same kine-
matical phase space as a Yang-Mills theory. The canonical
conjugate pair is given by a set of (densitized) triads Ẽai
and an SU(2) connection Aia. This allowed us to describe
the theory in terms of holonomies [2] leading to the de-
velopment of the loop representation, and later the spin
network representation [3]. These representations encode
in a natural way the diffeomorphism invariance of the the-
ory through the notion of knot invariance. The dynamics
of the theory, embodied in the Hamiltonian constraint, re-
mained elusive. The quantization of this constraint led to
the so-called Wheeler-DeWitt equation in the traditional
formulation of general relativity. This is a nonpolynomial
equation and presents several challenges as a quantum field
theory, since the usual techniques for regularizing opera-
tors introduce fiducial background metric structures that
are incompatible with the general covariance of the theory.
In terms of the Ashtekar new variables an important step
forward was realized when Thiemann [4] showed how to
write the Hamiltonian constraint as a scalar on the mani-
fold. This raised hopes that a natural realization in terms
of spin networks could be achieved. Thiemann represented
the action of this constraint on diffeomorphism invariant
states. He showed that the constraint commuted with it-
self, as one expects in a diffeomorphism invariant con-
text. Moreover, Thiemann’s formulation took place in the
context of the real version of the Ashtekar variables intro-
duced by Barbero [5], bypassing the controversial issue of
the “reality conditions.” The Hamiltonian considered cor-
responded to the usual real, Lorentzian general relativity.

In this paper we present a realization of the Hamiltonian
constraint in terms of a different space of wave functions,
associated with the Vassiliev invariants. A distinctive fea-
ture of these wave functions is that they are “loop differen-
tiable.” The loop derivative [6] is the derivative that arises
in the space of functions of loops when one considers the
change in wave functions due to the addition of an infini-
tesimal loop. In the context of holonomies, this derivative
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encodes the information of the curvature tensor Fab . There
is a well known difficulty with computing this derivative
in the context of knot invariants, since due to the diffeo-
morphism symmetry there is no notion of “infinitesimal”
loop. Therefore one cannot compute the limit involved in
the derivative in a direct way. In the case of Vassiliev in-
variants one can assign a value to this limit recalling the
relationship between them and the expectation value of the
Wilson loop in a Chern-Simons theory,
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where s is a spin network [a multivalent graph with
holonomies in representations of SU(2) associated with
each edge] and Ws�A� is an SU(2) invariant obtained by
interconnecting the holonomies along the edges with
appropriate intertwiners constructed with invariant tensors
in the group. It is a natural generalization to the spin
network context of the “Wilson loop” (trace of the holon-
omy) one constructs with ordinary loops. The quantity
E�s, k� is an infinite series in powers of 1

k , and is a
(framing-dependent) knot invariant. This invariant was
first considered as connected with a Chern-Simons theory
by Witten [7] in the context of loops and, remarkably,
also in the context of spin networks [8,9]. In the context
of loops this invariant is associated with the evaluation
for a particular value of the variable of the Kauffman
bracket polynomial. The coefficients in the infinite series
are all knot invariants, and one can isolate within these
coefficients the elements of a basis of framing independent
invariants called the Vassiliev invariants when restricted
to ordinary loops. This construction can be extended to
the spin network context, as we showed in two recent
papers [10,11]. We will refer to the resulting invariants
as Vassiliev invariants (including the framing-dependent
© 2000 The American Physical Society
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ones), although it should be noticed that this is a general-
ization of the usual notion of Vassiliev invariant, which is
customarily introduced for ordinary nonintersecting loops.
One can evaluate the loop derivative on these invariants
and one is left with a simple formula [10],
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where s0 is a new spin network obtained by interconnecting
in a certain way the original spin network s with the path
p on which the loop derivative Dab depends, and LJjJk is
a group factor dependent on the valences Jj and Jk of the
lines ej and ek . The action of the derivative is distribu-
tional, as one would expect in a diffeomorphism invariant
context. A similar action is obtained not just for the infi-
nite series E but also for each individual coefficient and its
framing dependent and framing independent portions.
In terms of the loop derivative we just discussed one
can now obtain an action for the Hamiltonian constraint
in the scalar version introduced by Thiemann [4]. We
will discuss for simplicity here only the action on trivalent
spin networks, and we will concentrate on the “Euclidean”
portion of the constraint. Thiemann has shown how if one
has the action of this portion one can construct the rest of
the full Lorentzian Hamiltonian constraint. Classically, the
constraint is written as [4]

H�N� �
2
G

Z
d3x N�x� �Aia,V �Fi

bcẽ
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where V is the volume of the manifold and G is Newton’s
constant. At a quantum level, one introduces a triangula-
tion adapted to the spin network of the state one is acting
upon, replaces the Poisson bracket by a commutator, and
represents the connection as an infinitesimal holonomy. In
the context of trivalent intersections only one term in the
commutator is nonvanishing, and one gets for the Hamil-
tonian [11]
where r is a group factor dependent on the valences of
the three incoming lines at the intersection. The action
of the Hamiltonian is nonvanishing only at intersections.
The function x is a regulator that restricts the integrals
in u,w to the tetrahedra surrounding the vertex y and
fixes the point y to the vertex y; a concrete realization is
x�u,w, y; y� � QD�u, y�QD�w, y�QD� y, y��V e3 where
the theta functions are one if the first argument is within
any of the eight tetrahedra surrounding the vertex y and
zero otherwise, and the volume of each tetrahedra is given
by e3V . This expression is quite similar to the original
proposal for a (doubly densitized) Hamiltonian in the loop
representation in terms of the loop derivative [12]. If one
particularizes this expression to the expectation value of
the Wilson net, one gets a very compact expression [11],
where nJiJjJk is a group factor. From this expression one
can derive the action of the Hamiltonian on a given Vas-
siliev invariant; it turns out to produce an invariant of one
order less. It is quite remarkable that the action of the loop
derivative in a space of diffeomorphism invariant functions
yields a finite well defined expression for the constraint.
For intersections of valences higher than three the action
of the Hamiltonian ceases to be just a prefactor, but it still
can be written explicitly. One can also introduce a diffeo-
morphism constraint,
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where fe�x, y� is a regularization of the Dirac delta. Act-
ing on Vassiliev invariants, one can explicitly check via a
detailed calculation [11] that the constraint vanishes iden-
tically, as one would expect since the wave functions are
diffeomorphism invariant [13].

As we see from Eq. (4), the action of the Hamiltonian
constraint on a Vassiliev invariant produces a prefactor that
depends on the location of the vertices times a group pre-
factor times a Vassiliev invariant. The location of the ver-
tex is determined by the intersection of the edges of the
spin network. The latter are modified by the loop deriva-
tive, and as a consequence the loop derivative acts on func-
tions of the position of the vertices. The loop derivative
leaves the group factors unchanged. Therefore the action
of the Hamiltonian produces as a result a function that is
not diffeomorphism invariant but that is still loop differ-
entiable, allowing that one can compute the constraint al-
gebra. We call these states generically c�s,M, V� where
M is the function of the vertex and V the group factor.
We can think of these states as the action of an operator
Ô�M, V� on c�s�. An explicit calculation [11] shows that

C� �N�O�M, V�c�s� � O�Na≠aM, V�c�s�

1 O�M, V�C� �N�c�s� . (7)

That is, the diffeomorphism Lie drags the prefactor and
therefore acts geometrically. This ensures that the con-
straint algebra of diffeomorphisms is correctly imple-
mented in this space. It also shows that the commutator
of diffeomorphism and Hamiltonian is correct; that is, the
Hamiltonian transforms covariantly.

To study the consistency of the commutator of two
Hamiltonians with the classical Poisson relation �H�N�,
H�M�� � C�qabVa� where Va � M≠aN 2 N≠aM, one
needs to promote to a quantum operator the right hand
side of the relation, which is proportional to the product
of a diffeomorphism and the doubly contravariant spatial
metric. When one computes the right hand side, one finds
that it vanishes identically on spin network states. This, in
fact, can be tracked down to the vanishing of the double
contravariant metric, which quantum mechanically can be
written as [11,14]
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where the operator Q can be written in terms of the
holonomies along edges incoming to the vertex and the
volume operator and is finite for any spin network. If
one assumes that the regularizations d and e are of the
same order, the above expression is of order e2 (given by
2316
the two one-dimensional integrals of Q functions of size
e) and therefore vanishes. If one computes the doubly
covariant metric one finds that it diverges.

In spite of the fact that the loop derivative acts on the
prefactor generated by the action of the Hamiltonian, when
one computes the successive action of two Hamiltonians
a cancellation takes place [11], the left hand side of the
commutator equation vanishes, and therefore the algebra
is consistent.

There is regularization ambiguity in these expressions.
A clear example of this is in the double contravariant met-
ric where there are two limits and one could choose to
carefully “tune” them in order to end with a nonvanish-
ing expression. The price to pay is that the nonvanishing
expression depends on the background structures used in
the regularization. This is not surprising. In the spin net-
work representation we are in a manifold without a pre-
determined metric. The only pieces of information we
have are the locations of intersections and the orientations
of the lines entering (not their tangent vectors). This is
insufficient information to construct a symmetric tensor.
Therefore the expression for the metric was bound to be
either zero or background dependent. Similar considera-
tions hold for the covariant metric. A posteriori, the result
we find via a careful regularization is what one should have
intuitively expected.

We therefore have a nontrivial, well defined quantiza-
tion of canonical general relativity with the space of states
given by the Vassiliev invariants. The expressions of the
constraints are relatively simple, well defined, and finite.
Moreover, one can compute the constraint algebra, and it
is consistent with the classical Poisson algebra. Notice
that the realization of the constraints is “off shell” in the
sense that we do not need to work with diffeomorphism
invariant states from the outset, and, in fact, this is sen-
sible since the Hamiltonian constraint does not map within
such a space of states. These points (the space of states
chosen and the fact that we have an infinitesimal generator
of diffeomorphisms) distinguish our construction from that
of Thiemann which operated on diffeomorphism invariant
states. It has in common the fact that the Hamiltonian
commutes with itself.

Should one worry about a theory of quantum gravity
where the metric appears to vanish? This will largely de-
pend on how the semiclassical limit is set up for the theory.
As we argued above, the double contravariant metric could
not be anything else but vanishing in the context of the spin
network quantum theory. More meaningful physical opera-
tors (like the length, the area, and the curvature invariants
[15]) are nonvanishing and the volume operator would also
be nonvanishing if one included intersections beyond the
trivalent ones. A correct semiclassical limit could be built
in terms of these and other operators which are in no sense
degenerate. Can one find solutions to the Hamiltonian con-
straint? We can already construct several. If one consid-
ers the framing independent Vassiliev invariants, one can
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check that they are annihilated by the Hamiltonian con-
straint (in the context of trivalent intersections) [11]. What
is lacking if one compares with the construction of Thie-
mann is to have an inner product that would allow us to
characterize these and other states as normalizable. Other,
more nontrivial solutions (some of them with a cosmologi-
cal constant) are likely to be present, as is hinted by the
results involving Chern-Simons states in the loop represen-
tation [16] (see also [10] for some results in terms of spin
networks).

Thiemann’s approach has also been studied in 2 1 1 di-
mensions [17], and appears to lead to a satisfactory quan-
tization, provided one chooses in an ad hoc way an inner
product that rules out a certain infinite dimensional set of
solutions. In a forthcoming paper we will discuss the quan-
tization of 2 1 1 dimensional gravity using an approach
that has elements in common with the one we pursue here,
in particular, the requirement of loop differentiability of
the states. We will see that this requirement limits us (at
least for low valence intersections) to the correct solution
space in a natural way.

Having a family of consistent theories provides a context
for calculations that are of a more “kinematical” nature,
like the calculations of the entropy of black holes [18].
It also provides a basis for calculations of semiclassical
behavior that are more dependent on the dynamics of the
theory [19]. It is expected that the theory could be coupled
to matter following the ideas of Thiemann [20]. Deciding
if one of these consistent theories is a physically realistic
quantum theory of gravity will have to wait until testable
predictions that involve the dynamics in a more elaborate
way are worked out.
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