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Motivated by the recent discoveries of spin-1 and pseudo-spin-1�2 Bose gas, we have studied the
general structure of the Bose gases with arbitrary spin. A general method is developed to uncover the
elementary building blocks of the angular momentum eigenstates, as well as the relations (or interactions)
between them. Applications of this method to Bose gas with integer spins � f � 1, 2, 3� and half integer
spins � f � 1�2, 3�2� reveal many surprising structures.

PACS numbers: 03.75.Fi, 05.30.Jp
Recent experiments on dilute quantum gases of alkali
atoms have produced a spin-1 and (pseudo-)spin-1�2 Bose
gas, respectively. The former is produced in optically
trapped 23Na [1], the latter in magnetically trapped 87Rb
by rotating the hyperfine states j f � 2, m � 1� and j f �
1, m � 21� into each other through a slightly detuned rf
field [2]. Many macroscopic quantum phenomena have
been observed in these systems. At present, these phe-
nomena can be explained in terms of the single condensate
picture. However, in the case of spin-1 Bose gas with anti-
ferromagnetic interaction like 23Na, it has been pointed out
very recently that as the magnetic field gradient is reduced,
the single condensate will evolve toward an angular mo-
mentum eigenstate, which will become a spin singlet as the
magnetic field is reduced to zero [3,4]. The singlet state
is a “fragmented” structure which bears no resemblance to
the single condensate state [4]. That the ground state of
a Bose system can be very different from a conventional
single condensate when it acquires internal degrees of free-
dom is a surprise.

Motivated by the fragmented structure of the spin-1
Bose gas, we consider Bose gases with higher spins. Al-
though Bose gases with spin f . 1 have not yet been
produced, it is conceivable that they can be realized in the
future. After all, both spin-1 and spin-1�2 Bose gases have
come into existence only within the last one and a half
years. Very recently, the Colorado group has succeeded in
Bose condensing 85Rb in a magnetic trap, which will be
a spin-2 Bose gas when loaded into an optical trap. The
main reasons for our investigation, however, remain theo-
retical and conceptual. The nature of the ground states
of Bose gases with internal degrees of freedom is of fun-
damental importance. It has a place in the lore of super-
fluid physics and significance that goes beyond to the study
of Bose-Einstein condensation. Our goal is to present a
general method to construct the (total) angular momentum
eigenstates jF, Fz� for Bose gases with arbitrary spin f.
The construction of these eigenstates is a crucial step in di-
agonalizing the Hamiltonian of the system. Our method re-
veals many surprising structures. Generally, the spin state
jF, Fz � F� is made up of singlet and magnetic build-
ing units. A schematic representation of the structure of
the spin state jF, F� for bosons with spins f � 1, 2, 3 and
0031-9007�00�84(11)�2302(4)$15.00
“pseudospin” 3�2 are shown in Figs. 1(a)–1(d). They il-
lustrate the intricate structure of these eigenstates and their
increasing complexity with increasing f. For simplicity,
we shall from now on refer to half integer pseudospins
as “spins.”

The essence of the problem can be illustrated by consid-
ering a homogeneous Bose gas with spin-f. (Its relation
to a trapped gas can be understood either in terms of local
density approximation and in the procedure outlined in
Ref. [4].) For a homogeneous dilute Bose gas, we first
consider the condensate in the zero momentum mode
(i.e., k � 0), denoted by the annihilation operator am �
am�k � 0�, where m labels the 2f 1 1 spin compo-
nents. The angular momentum operator then becomes
F̂ � ay

mfmnan , where fmn is the spin matrix for a spin-f
boson. The effect of the k fi 0 modes is to deplete the
condensate. They can be ignored in the zeroth order
approximation as they contribute only a small correction
to the energy. (For trapped gases, the k � 0 mode will
be replaced by the lowest self-consistent mode that the
system condenses into [3,4].) To construct the angular
momentum eigenstates, it is sufficient to focus on the
states jF, Fz � F� with maximum spin projections, since
other states with Fz , F can be obtained by applying to
jF, F� the spin lowering operator F̂2 � F̂x 2 iF̂y . In
the following, we shall first derive our method, and then
illustrate its application for the integer cases f � 1 to 3
and half integer cases f � 1�2 and 3�2. The case f � 3
is particularly subtle and will be considered last.

(I.1) Outline of the generating function method.—We
first outline the logic of our method before presenting the
detailed derivations. We begin by considering the total
number of maximum spin states jF, F� for systems of N
particles, which we denote as MN �F�. To generate this
number for all N and S simultaneously, we consider the
generating function

G�x, y� �
X

N$0

X
F$0

MN �F�xNyF , (1)

where x and y are complex numbers within the unit circle
(jxj, j yj , 1) to ensure convergence. Once this function
is constructed, we shall see that MN �F� is given by the
number of solutions of a set of equations obeyed by two
© 2000 The American Physical Society
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FIG. 1. (a), (b), and (c) are schematic representations of the basis of the angular momentum state jF, F� for spin f � 1, 2, and
3�2, respectively. Enclosed units with and without arrows represent magnetic and singlet units, respectively. The number of dots
indicates the number of particles in the unit. For example, in the spin-2 case (b), the state consists of two-particle and three-particle
singlets (represented as arrow-free ellipses and triangles containing two and three dots, respectively), and a two-particle spin-2 pair
(represented as an ellipse with two dots and an arrow). The three-particle spin-3 unit is represented as a triangle containing three
dots and an arrow. The dashed circles in the interior are drawn to help to visualize the singlet and the magnetic units. They are not
meant to imply the existence of a singlet core. (d) is a schematic representation of the singlet structure of a spin-3 Bose gas, which
consists of two-, four-, six- , and ten-particle singlets, and a “constraint” unit consisting of 15 particles, which is reducible to other
existing singlet units when it appears more than once.
sets of non-negative integers �si $ 0� and �mj $ 0�. The
integer si is the number of singlet building unit Qi which
is made up of n

�s�
i bosons and carries no spin, while mj is

the number of magnetic building unit Gj which is made up

of n
�m�
j bosons and carries spin �j . The integers �si $ 0�

and �mj $ 0� satisfy number and spin constraintsX
i

n
�s�
i si 1

X
j

n
�m�
j mj � N ,

X
j

�jmj � F , (2)

as well as a set of conditions La that further limit the
range of the integers �si� and the �mj�. These conditions
La reflect the interdependence (or “interactions”) among
the building units. The conditions La are very simple for
spin f , 3 but become quite complicated as f $ 3, illus-
trating the rapidly increasing complexity of the system as
f increases. The typical form of these conditions will be-
come clear when we come to our examples. The general
structure of the maximum spin state is therefore jF, F� �P

A��si�, �mj��
Q

i,j Q
ysi
i G

ymj

j jvac�, where the A’s are co-
efficients and the sum is over all non-negative integers
�si $ 0� and �mj $ 0� satisfying the constraints La .

(I.2) Derivation of the generating function method.—
We begin with the observation that the integer MN �F� can
be expressed as

MN �F� � IN �F� 2 IN �F 1 1� , (3)
where IN �F� is the total number of states with Fz � F,
independent of the value of total spin F. Equation (3)
follows from the fact that all spin multiplets with total spin
F0 . F will contain a state jF0, Fz � F�, which contribute
1 to both IN �F� and IN �F 1 1�, and hence 0 to MN �F�.
Only those spin states with total spin Ftotal � Fz � F will
be included in the integer IN �F� and not IN �F 1 1�. That
Eq. (3) is useful is because it is much easier to construct a
generating function for IN �F� due to the removal of the
spin constraint. Before proceeding, we note that while
MN �F� is defined only for F $ 0, IN �F� is defined for
both positive and negative F such that IN �F� � IN �2F�.

To find IN �F�, we note that a many-body state with total
spin projection Fz � F is of the form

jF, Fz � F� �
X

�nj$0�
B��nj��

√
fY

j�2f

a
ynj

j

!
jvac� (4)

with
Pf

j�2f nj � N and
Pf

j�2f jnj � F, where �nj� is a

set of 2f 1 1 non-negative integers, a
y
j creates a boson in

spin state j, and B’s are coefficients. The number of states
with Fz � F is

IN �F� �
X

�nj$0�
D

√
fX

j�2f

nj

!
D

√
fX

j�2f

jnj 2 F

!
, (5)

where D�x� is a delta function ensuring the vanishing of
x. The generating function Eq. (1) can in principle be
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obtained by substituting Eqs. (3) and (5) into Eq. (1).
However, the constraint F $ 0 in Eq. (1) prevents an
efficient summation. We therefore consider the function

W�x, y� �
X

N$0

X
F

�IN �F� 2 IN �F 1 1�	xNyF , (6)

where the sum F ranges over all integers. Clearly, G�x, y�
is W�x, y� with all negative powers of y eliminated. This
elimination can be achieved by the following integration:

G�x, y� �
Z 2p

0

du

2p

X̀
��0

�� yz21��W�x, z�	z�eiu . (7)

Performing the sum in Eq. (7), G becomes a contour inte-
gral around the unit circle C, z � eiu ,

G�x, y� �
Z

C

dz
2pi

W�x, z�
z 2 y

. (8)

The expression W can be obtained easily since F now runs
through all integers. Substituting Eq. (5) into Eq. (6), and
first sum over F and N , the functions W become

W�x, z� � �1 2 z21�

"
fY

j�2f

X̀
nj�0

# √
fY

j�2f

xnj zjnj

!
(9)

� �1 2 z21�
fY

j�2f

1
1 2 xzj

, (10)

We then arrive at the key expression for the generating
function,

G�x, y� �
Z

C

dz
2pi

1 2 z21

z 2 y

fY
j�2f

1
1 2 xzj

. (11)

To illustrate how Eq. (11) can be used to obtain the struc-
ture of the maximum spin state jF, F�, we consider the
following examples.

Spin-1 bosons: For f � 1, Eq. (11) gives

G� f�1��x, y� �
1

�1 2 x2� �1 2 xy�
(12)

�
X

n2$0

X
�1$0

x2n21�1y�1 . (13)

Comparing with Eq. (1), we have

MN �S� �
X

n2$0

X
�1$0

D�2n2 1 �1 2 N�D��1 2 F� . (14)

Equation (14) shows that MN �S� is the number of the so-
lutions of the equations

2 3 n2 1 1 3 �1 � N , 1 3 �1 � F . (15)

It is clear that Eq. (15) has a unique solution n0 � �N 2

F��2, �1 � F. Hence M
� f�1�
N �F� � 1; i.e., there is only

one maximum spin state jF, Fz � F�. Next, we recall
that the exponent of x and y are associated with particle
number and spin, respectively. Equation (15) shows that
the system consists of �1 magnetic structural units which
are spin-1 bosons (a1), and n2 singlet pairs of bosons
Q2. A simple exercise shows that Q2 � �2a1a21 2 a2

0�.
The (un-normalized) many-body state jF, Fz � F� is then
2304
given by jF, F� � a
yF
1 Qy�N2F��2jvac�, which is the result

given in Ref. [4]. (See also Fig. 1a.)
Spin-2 bosons: For f � 2, Eq. (11) gives

G� f�2��x, y� �
1 1 x3y3

�1 2 x2� �1 2 x3� �1 2 xy2� �1 2 x2y2�
(16)

�
X X

m3�0,1

x2s213s31m112m213m3y2m112m213m3 ,

(17)

where the first sum is over the non-negative integers set
�s2, s3, m1, m2�. We then see that MN �F� is given by the
number of solutions to the equations

2s2 1 3s3 1 m1 1 2m2 1 3m3 � N , (18)

2m1 1 2m2 1 3m3 � F . (19)

A solution of Eqs. (18) and (19) describes a state con-
sisting of s2 two-particle singlets Q2, s3 three-particle
singlets Q3, m1 spin-2 bosons (a

y
2 ), and m2 two-particle

spin-2 state j2, 2� (denoted as G2). Since m3 � 0 and 1,
the system may or may not contain a three-particle spin-3
state j3, 3� (dented as G3) depending on whether F is odd
or even. It is straightforward to work out the expressions
of these states, which are Q2 � a2a22 2 a1a21 1

1
2a2

0,
Q3 � a0�2a2a22 1 a1a21 2

1
3a2

0� 2
p

3�2 �a2
1a22 1

a2a2
21�, G2 � a2 a0 2 �

p
6�4�a2

1 , and G3 � 2a2
2a21 2p

6 a2a1a0 1 a3
1. The general structure of the state jF, F�

is then jF, F� �
P

A��si�, �mi�� �aym1
2 G

ym2
2 G

ym3
3 � 3

Q
ys2
2 Q

ys3
3 jvac�.

The condition m3 � 0, 1 is the additional constraint La

mentioned in section (I.1). If G3 was a “free” unit that
could appear as many times as possible, the numerator of
Eq. (16) would be (instead of 1 1 x3y3) an infinite seriesP`

m3�0�x3y3�m3 , which will turn into a factor �1 2 x3y3�21

like other free building units (Q2, Q3, a2, and G2) in the
denominators in Eq. (16). The fact that the series of x3y3

terminates at the first order means that a pair of three-
particle singlets can be expressed in terms of all other
free excitations (Q2, Q3, a2, and G2) and therefore has
already been accounted for in the generating function. In-
deed, when examining G3 (because of the prediction of
the generating function), one finds G

2
3 � 2�16

p
6�9�G3

2 1

�8
p

2�3�a2
2G2Q2 2 4

p
2�3 a3

2Q3 [5]. Note, however, that
G3 appears at most once. It therefore has no thermody-
namic significance. This means that one can obtain the
relevant thermodynamic structure by taking any term in
the numerator of Eq. (16). (See also Fig. 1b.)

(II). Bose gas with half integer spins.—When f is a half
integer, it is useful to consider the generating function

G�x, y� �
X

N$0

X
F$0

MN �F�xNy2F . (20)

Proceeding as the integer case, the function W�x, z�
in Eq. (10) becomes W�x, z� � �1 2 z22�

Qf
j�2f�1 2

xz2j�21. Since f is a half-integer, W consists of even and



VOLUME 84, NUMBER 11 P H Y S I C A L R E V I E W L E T T E R S 13 MARCH 2000
odd powers of z. Using the previous method to project
out all the negative powers in y, we have

G�x, y� �
Z

C

dz
2pi

1 2 z22

z 2 y

fY
j�2f

1
1 2 xz2j

. (21)

Spin-1�2 bosons: For f � 1�2, we have

G� f�1�2��x, y� �
1

1 2 xy
�

X
n$0

xn� y2�n�2. (22)

Since the equation n � N , n�2 � F has only one solution
and forces F � N�2. This means that the total spin of
systems of spin-1�2 bosons is fixed by the particle number
N to be F � N�2, and jF, F � N�2� � a

yN
1�2jvac�. The

system can be referred to as a “statistical ferromagnet”
since the ferromagnetism is forced by statistics.

Spin-3�2 bosons: For f � 3�2, we have

G� f�3�2��x, y� �
1 1 x3y3

�1 2 x4� �1 2 xy3� �1 2 x2y2�
(23)

�
X X

m3�0,1

x4s41m112m213m3

3 � y2��3�2�m11m21�3�2�m3 , (24)
where the first sum is over non-negative integers
s4, m1, m2. The number of spin state jF, F� is given by
the number of the solution of

4s4 1 m1 1 2m1 1 3m3 � N ,

3
2

m1 1 m2 1
3
2

m3 � F ,
(25)

which describes a state consisting of s4 four-particle
singlets Q4, m1 spin-3�2 bosons (i.e., a3�2), and m2
spin-1 pairs j1, 1� made up of two spin-3�2 particles
(denoted as G2). Since m3 � 0 and 1, the system may
also contain a spin-3�2 three-particle state j 3

2 , 3
2 � (denoted

as G3�2), which appears at most once. Thus, we have
jF, F� �

P
A��si�, �mi�� �aym1

3�2 G
ym2
2 G

ym3
3 �Qys4

4 jvac�. (See
also Fig. 1c.)

(III) Spin-3 bosons.—The case of f � 3 begins to illus-
trate the full complexity of the bosons with higher spin. It
is sufficiently intricate so we discuss it last. When f � 3,
Eq. (8) gives

G� f�3��x, y� �
�1 1 x15 1 C�x, y�	D�x, y�

�1 2 x2� �1 2 x4� �1 2 x6� �1 2 x10�
,

(26)

D�x, y� �
1

�1 2 xy3� �1 2 x2y2� �1 2 x2y4�
. (27)

The term C�x, y� is a polynomial with about 50 terms
of the form xayb with (a, b . 0). Since b . 0, these
terms represent magnetic structures. From Eq. (1), we see
that the structure of the total singlet state jF � 0, Fz � 0�
is given by G�x, y � 0�. Extracting G�x, y � 0� from
Eq. (16) (i.e., setting C � 0 and D � 1), we see that the
singlet state is a linear combination of singlets consisting
of two, four, six, and ten particles, denoted as Q2, Q4,
Q6, and Q10, respectively. From our discussions for the
spin-2 case, we see that all singlets except those made up of
15 particles (Q15) can be expressed as products and sums
of the free singlet set �Q2, Q4, Q6, Q10�. However, two
15-particle singlets (i.e., Q

2
15) are reducible to free singlet

units. (See also Fig. 1d.)
As before, the elementary magnetic units �Gi� are given

by the denominator of D. They are single particle spin-3
bosons �a3�, two-particle spin-2 pairs (j2, 2�), and two-
particle spin-4 pairs (j4, 4�). The major difference between
the f � 3 and previous examples, however, is the appear-
ance of a large number of terms in the numerator of the
generating function (i.e., C), and the fact that about half of
these terms have negative signs, which means disappear-
ance rather than appearance of a configuration. The origin
of the negative terms is due to the fact that a product of
two or more different magnetic units Gi and Gj can be ex-
pressed in terms of other magnetic and nonmagnetic units.
These are the “interaction” constraints La we mentioned
in section (I.1). Note that in the case of f � 2, the interac-
tion constraints come from the reducibility of a single type
of structure; i.e., G

2
3 is reducible into other free units. As a

result, all terms in the numerator of G� f�2� are positive be-
cause one simply enumerates the multiplicity of G3 until it
becomes reducible. If, however, the interaction constraints
involve the reducibility of the products of two or more dif-
ferent magnetic operators, as well as “scattering” such as
GiGj ! GjGk 1 etc., then the counting process cannot be
simply a termination of the multiplicity of a particular pat-
tern. We shall not analyze the interaction constraint for the
f � 3 case here because it is very involved. Despite this
complexity, it is clear from the generating function what
the elementary magnetic building units are.

In summary, we have illustrated the method to uncover
the elementary building units of the angular momentum
eigenstates of a spin-carrying Bose gas, and the complex
structure of the ground state of these Bose gases as a func-
tion of magnetization. The fact that the number of inde-
pendent singlet units proliferates as f increases also means
that the system becomes more fragmented, since spin fluc-
tuations (which are already huge in the spin-1 case in the
low-field limit [4]) will increase as the number of different
singlets increases.
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