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Motion of Dark Solitons in Trapped Bose-Einstein Condensates
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We use a multiple time scale boundary layer theory to derive the equation of motion for a dark (or grey)
soliton propagating through an effectively one-dimensional cloud of Bose-Einstein condensate, assuming
only that the background density and velocity vary slowly on the soliton scale. We show that solitons
can exhibit viscous or radiative acceleration (antidamping), which we estimate as slow but observable
on experimental time scales.

PACS numbers: 03.75.Fi, 03.65.Ge
The success of the Gross-Pitaevski mean field theory in
describing experimentally observed dilute Bose conden-
sates [1] shows that one really can persuade a large number
of particles to behave as a field. There is thus a pleasant cir-
cularity in investigating situations where this field in turn
behaves in a particlelike manner, in that it contains topo-
logical defects or solitons. In this paper we discuss one
particular particlelike configuration of the Gross-Pitaevski
mean field, namely the one-dimensional dark soliton.
Quasi-one-dimensional traps are realistic prospects in the
relatively near future [2], and dark solitons are expected
to emerge in them from generic violent collisions between
condensates [3,4]. A controlled method for creating them
by adiabatic state engineering with lasers has also recently
been proposed [5]. And they are expected to play a crucial
role in the eventual decay of superfluid currents in tight
toroidal traps [6], which would be a valuable analog of
the thin superconducting wires whose resistivity is one of
the triumphs of nonequilibrium statistical mechanics [7].
Although dark solitons have been studied extensively in
nonlinear optics [8], optical fibers are spatially homogene-
ous on the relevant scale. In this Letter we extend or cor-
rect previous treatments of dark soliton motion in Bose
condensates [3,9,10], by using multiple scale analysis to
derive equations of motion for a dark soliton moving
through a background condensate which changes slowly in
both space and time, and is subject to a generic slowly vary-
ing potential (not necessarily harmonic). This powerful
analytical method may also be useful for other structures.

The Gross-Pitaevski equation (GPE) governs the evolu-
tion of the c-number “macroscopic wave function” c� �x, t�
of a Bose-Einstein condensate. (This is, of course, a mean
field approximation to the full quantum field theory; we
will consider dissipation from quasiparticle interactions
very briefly below.) Incorporating a chemical potential by
extracting a factor e2imt� h̄, and then appropriately scal-
ing the wave function, space, and time, one can write this
equation in the convenient form

i≠tc � 2
1
2

=2c 1 �jcj2 1 V � �x� 2 1�c . (1)

We assume here a positive scattering length, and we do not
restrict the normalization constant U �

R
dx jcj2, which
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is the number of particles rescaled by the strength of their
mutual repulsion. Crucially, we assume a trap so thin that
one can apply the GPE in one dimension. The approach
to this limit from three dimensions has recently been dis-
cussed [11,12]. The essential requirement is that the trans-
verse thickness of the trap be less than the healing length,
to stabilize against buckling modes in the GPE. Making
transverse confinement stronger than the temperature will
make even the quantum field theory effectively one di-
mensional. Experimental capability is already approach-
ing both these limits.

Equation (1) in one dimension with constant V has been
extensively studied in nonlinear optics [8], and a solution
with a localized structure has long been known: cDS �
tanh

p
1 2 V x. This time-independent solution is known

as a dark soliton, because it describes a small dark spot in
a light pulse; in our case this becomes a small “bubble”
of low condensate density in the dilute Bose gas. If c�x�
were restricted to be real, the dark soliton would be topo-
logically stable, like other “kink” solitons; but by taking
c into the complex plane one can deform it into a con-
figuration with constant density and phase, eliminating the
bubble. So unlike two-dimensional vortices, dark solitons
are not topologically stable. Before considering their mo-
tion, therefore, one should first examine their stability; but,
in fact, the two problems are closely connected, because
the complex deformations of cDS include the larger fam-
ily of dark solitons moving with arbitrary (subcritical) ve-
locities [13]. These exact nonstationary solutions to (1),
moving with constant velocity p � �q, are

cGS � ip 1

q
y2

c 2 p2 tanh
q

y2
c 2 p2�x 2 q�t�� , (2)

where yc �
p

1 2 V is the Landau critical velocity
(which the soliton cannot exceed). For p ! 0 we recover
the motionless dark soliton at position x � q. Since for
nonzero p the condensate density jcj2 never vanishes,
moving dark solitons are also called grey solitons.

For moving solitons the difference between maximum
and minimum densities is y2

c 2 p2, and the phase slip
across the soliton is p 1 2 arctan�p�

p
y2

c 2 p2�. This
means that in the limit p ! 6yc, the soliton becomes
identical with motionless condensate. Thus the soliton
© 2000 The American Physical Society
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with maximum speed is the ground state; the energy of
slower solitons is higher. In this sense one may say that
dark solitons have negative kinetic energy. To be precise,
the solutions given in (2) have fixed chemical potential (set
to one), and their free energy G � E 2 U is

G � G0 1
4
3

�1 2 V 2 p2�3�2, (3)

where E � 1
2

R
dx �jc 0j2 1 jcj4 1 2V jcj2�, and G0 is the

free energy of the ground state c �
p

1 2 V . [Alterna-
tively, we could change the chemical potential with p so as
to keep the particle number constant; this slightly different
family of grey soliton solutions with constant U has en-
ergy E � E0 1 �4�3� �1 2 V 2 p2�3�2.] Thus, dark soli-
tons are energetically as well as topologically unstable, but
their instability is to acceleration, not to filling or collapse.
Bogoliubov theory shows that acceleration is indeed their
only instability, and as we discuss below, the “antidamp-
ing” time scale should be quite long.

So apart from slow antidamping, dark solitons in bulk
behave as robust free particles, obeying q̈ � �p � 0. We
now consider a dark soliton in a slowly varying medium,
where we will be able to derive a more complicated equa-
tion of motion, if we interpret the “slow variation” of V �x�
as implying that there exists a length scale L which is both
large compared to the soliton scale and small compared
to the trap scale. Precisely, there is a small dimensionless
e, such that exp�2

p
1 2 V �q� 2 p2 L� ø e for all phase

space points �q, p� through which the soliton will actu-
ally pass, but V �x� � V �q� 1 V 0�q� �x 2 q� 1 O �e2� as
long as jx 2 qj , L [with V 0�q�jLj being of order e].
We will then examine an interval jx 2 qj , L around a
grey soliton in a trap, the interval moving with the soliton,
and smoothly patch this interval into a background conden-
sate cloud in the hydrodynamic limit. Applying a simple
form of multiple time scale analysis will then yield the
equation of motion. This involved procedure (“boundary
layer theory”) is indeed necessary: merely treating V �x� as
a perturbation is valid only if the potential is everywhere
small, whereas we are interested in cases where, over large
enough distances, it can change greatly. And ordinary per-
turbation theory will be valid only for a short time, but we
are interested in large changes over longer times (such as
the reflection of the soliton from a barrier).

We begin with the simplest step of considering the back-
ground cloud. We will assume that the background cloud
consists of condensate varying slowly on the healing length
scale and its associated time scale, except possibly for
small high frequency perturbations. For the dominant low
frequency component, we define c �

p
r eiu for real r, u,

and stipulate that spatial and temporal derivatives of r and
y � ≠xu are of order e. We may therefore neglect

p
r00�

p
r in the GPE to obtain the hydrodynamic equations

≠tr � 2≠x�r≠xu� � 2≠x�ry� ,

≠tu � 1 2 r 2 V 2 y2�2 .
(4)

We now patch our family of solitons into this back-
ground condensate: within jx 2 qj , L we write c �
eiū1iȳ�x2q��c0 1 ec1�x 2 q, t�� 1 O �e2�, for

c0 � i�p 2 ȳ� 1 k tanhk�x 2 q� , (5)

where ū�t� � �u�q 2 L, t� 1 u�q 1 L, t���2, r̄ and ȳ

are similarly defined, and k2 � r̄ 2 �p 2 ȳ�2. Since p
would be constant if e ! 0, we conclude that �p is order
e; in fact, p, ȳ, and k may be taken as functions of the
“slow time” et.

We then expand the Gross-Pitaevski equation to order e

within jx 2 qj , L, keeping in mind that �p, V 0, �k, etc.,
are all O �e�. First using (4) to establish

≠t ū �
1
2

X
6

��≠t 1 p≠x�u�x, t��x�q6L

� pȳ 1 1 2 r̄ 2 V �q� 2 ȳ2�2 1 O �e2� , (6)

we find from the zeroth order terms �q � p as always, plus
the following at first order in e:
�V 0�q� 1 �̄y� �x 2 q�c0 1

∑
�p 2 �̄y 2 i �k

≠

≠k
k tanhk�x 2 q�

∏
� e

∑
i≠tc1jx2q 2 i�p 2 ȳ�c 0

1

1
1
2

c 00
1 2 c2

0 c�
1 2 �2jc0j

2 2 r̄�c1

∏
. (7)
We will abbreviate Eq. (7) as i≠tc1jx2q 1 E �c1, c�
1 � �

J �x, et�. [Note that it is a straightforward but very im-
portant step in obtaining (7) to distinguish ≠t , which is,
as usual, differentiation with respect to t with x fixed, from
differentiation with respect to t with x 2 q fixed: ≠tf�x 2

q, t�jx � ≠tf�x 2 q, t�jx2q 2 p≠xf�x 2 q, t�jt for any
function f.]

We could then proceed to solve Eq. (7) using the
Green’s function for the homogeneous part. To construct
this we would need all the independent solutions to the
homogeneous equation, but, in fact, for our purpose
we will require only the four independent solutions
u1, ..., u4 to the time-independent equation E �uj , u

�
j � � 0.

Distinguishing the fast and slow parts of c1 by defining
c1 � f�x 2 q, et� 1 x�x 2 q, t�, we can use (7) to
show that the real parts of certain integrals are constrained
to vanish:
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Re
Z q1L

q2L
dx�2iu�

j �x�≠txjx2q 1 ≠x�x 0u�
j 2 u�0

j x 2 2i�p 2 ȳ�u�
jx�� �

Re
Z q1L

q2L
dx�2u�

j �x�J �x, et� 2 ≠x�f0u�
j 2 u�0

j f 2 2i�p 2 ȳ�u�
jf�� � 0 . (8)
Here the crucial final equality follows from the fact that the
two sides of the preceding equation vary on different time
scales, and so must separately equal zero. (Since the first
line is linear in x , which must be fast, a nonzero constant is
not allowed.) This is the great strength of the combination
of boundary layer and multiple time scale analysis, that it
allows us to obtain the motion of a short-scale defect in a
long-scale background, by solving only time-independent
equations.

Equation (8) gives us four constraints, which since all
four uj�x� may be obtained explicitly, can be evaluated.
In addition, we require that our soliton c match smoothly
into the background flow as jx 2 qj ! L, and this intro-
duces constraints from (4) as well. Together these con-
straints fix the hitherto unknown �p, and also relate r, u, y
at x � q 2 L to their values at x � q 1 L. We illustrate
the procedure with the simplest but most important con-
straint, the one involving u1�x� � sech2k�x 2 q�. Since
u1�6L� and u0

1�6L� are exponentially negligible, we dis-
card terms of this order in (8). We can then extend the
limits of integration to infinity and shift the integration
dummy variable x 2 q ! y, to obtain

k
Z `

2`
dy�k�V 0�q� 1 �̄y�y tanhky 1 �p 2 �̄y�sech2ky �

2 �p 1 V 0�q� 2 �̄y � 0 .

(9)

This is the equation of motion, accurate to O �e�, for a
dark soliton in an otherwise hydrodynamic condensate in
an inhomogeneous potential. We will examine it in some
simple limits, before discussing the conditions obtained
from the other uj , and from requiring (4) as jx 2 qj ! L.

With y � 0, Eq. (9) implies

q̈ � 2
1
2

V 0�q� . (10)

In a harmonic trap, this implies oscillation of the soliton
with frequency 1�

p
2 times that of the dipole mode of the

condensate (the trap frequency) [14]. This result can also
be obtained for small oscillations by solving the Bogoliu-
bov equations for a motionless soliton in a trap, using a
simpler, time-independent version of the “boundary layer”
approach that led to (9) [12]. We have confirmed this
frequency to rather more than the expected accuracy in
numerical simulations [15] of harmonic traps over a wide
range of condensate densities and oscillation amplitudes;
we have also confirmed that the center of mass is de-
coupled and oscillates at the trap frequency. Equation (10)
also holds for arbitrary potentials, however, as long as they
vary slowly on the healing length scale. We have therefore
further confirmed the good accuracy of our equation of
motion by solving Eq. (1) numerically over a wide range
of parameters and for various potentials; a generic example
is shown in Fig. 1. Since with lasers one can generate
microwells or barriers in a trap, it should be possible to
realize similar potentials experimentally.

We now consider a stationary background flow, such
as in an inhomogeneous toroidal trap holding a persistent
current. In general, the system is quite complicated, but in
the limit where both the inhomogeneous potential V and
the average kinetic energy y

2
0 are small compared to the

chemical potential, we have r �� 1 2 V , y �� y0�1 1 V �,
which with ≠ty � 0 implies the easily solvable equation

q̈ � V 0�q� �y0 �q 2 1��2 . (11)

Despite the �q term, Eq. (11) is not dissipative: it may
be derived variationally from the Lagrangian �2�y

2
0� �1 2

y0 �q� �ln�1 2 y0 �q� 2 1� 2 V , and the energy �q
≠L
≠ �q 2 L is

conserved.
A simple example of the generally still more complex

case where r and y are time dependent is a soliton moving
in a harmonic trap of frequency V in which the collective
dipole mode has also been excited:

q̈ � 2
V2

2
�q 1 Q cosV�t 2 t0�� , (12)

where Q is the dipole amplitude. As required by the
Ehrenfest theorem for a condensate in a harmonic trap, the

FIG. 1. Density jcj2 for a dark soliton oscillating through a
static Thomas-Fermi cloud at U � 300, with potential V �
0.1x�x 2 2� 1 1.1sech2x shown in dots. Initially q � 22.18.
Equation (10) thus predicts the time between turning points
(where jcj2 � p2 � 0 at the minimum) to be T�2 � 11.5; the
error of about 4% is indeed O �e�.
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rigid dipole oscillation of background and soliton together,
q � Q cosV�t 2 t0�, is a solution to (12).

Since this Ehrenfest theorem states that the center of
mass of the condensate must oscillate at the trap frequency
V, but (10) makes the small soliton bubble oscillate at
V�

p
2, it is clear that the background condensate must be

perturbed by the soliton moving through it. This brings us
back to the constraints we have not yet examined, which
turn out to imply discontinuities of O �e� in both r and y

between x 2 q � 6L. These are in addition to the trivial
discontinuities ~ L due to background gradients. It is both
convenient and consistent with our O �e� boundary layer
approach to consider the entire interval jx 2 qj , L to be
pointlike as far as the background condensate is concerned;
so, formally letting L ! 0 after obtaining all our results
so far, the discontinuities across the soliton become abrupt.
The requirement for them can then be expressed as delta
function sources, at x � q�t�, which must be added to the
hydrodynamic equations. The result can be shown to be

≠tr � 2 ≠x�ry� 1 2 �kd�x 2 q� ,

≠ty � 2 ≠x�y2�2 1 r 1 V � 1 r21d�x 2 q�

3 �k�V 0 1 �y� 1 2�p 2 y� �k� . (13)

In most cases indeed these delta function sources are unim-
portant, since the soliton couples only to the smooth part
ȳ � �y�q1, t� 1 y�q2, t���2, and the sources generate
only discontinuities. The effect of these on ȳ depends
on the boundary conditions for the entire condensate, and
solving (9) and (13) together to determine this effect is gen-
erally not much easier than numerically solving the GPE
with the dark soliton. There are nevertheless some im-
portant points that can be learned from the source terms.
For instance, they preserve the Ehrenfest theorem in a
harmonic trap, as may be checked straightforwardly by
evolving X � 22kq 1

R
dx xr under (9) and (13). And

because of its coupling to the background fluid, one can
deduce that a dark soliton oscillating in a small well within
a large sample of bulk condensate will generate sound
waves, and so exhibit radiative antidamping. Numerical
integration of the GPE confirms this prediction: the soli-
ton eventually escapes from the microwell, the radiation
ceasing as it enters the region of constant potential [16].

In a finite trap, however, coupling to the background
condensate modes does not provide dissipation. In this
case dissipation can come only from corrections to mean
field theory; in particular, from collisions with uncon-
densed atoms of the thermal cloud. A simple estimate of
the antidamping time scale is provided by the rate at which
the soliton encounters particles, divided by the number 2k

of particles “in” the soliton (for the “soliton mass”). At
current experimental temperatures and densities, with 99%
of the particles in the condensate, this time is on the or-
der of one second, which agrees with the calculation in
Ref. [12] of the dark soliton decay time. It is clear there-
fore that the instability of dark solitons is by no means fast
enough to prevent their observation.

We are happy to acknowledge valuable discussions with
J. I. Cirac, V. Perez-Garcia, and P. Zoller. This work was
supported by the European Union under the TMR Network
ERBFMRX-CT96-0002 and by the Austrian FWF.

[1] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wie-
man, and E. A. Cornell, Science 269, 198 (1995); C. C.
Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet, Phys.
Rev. Lett. 75, 1687 (1995); K. B. Davis, M.-O. Mewes,
M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn,
and W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995).

[2] W. Ketterle and A. Aspect (private communications).
[3] W. P. Reinhardt and C. W. Clark, J. Phys. B 30, L785

(1997).
[4] T. F. Scott, R. J. Ballagh, and K. Burnett, J. Phys. B 31,

L329 (1998).
[5] R. Dum, J. I. Cirac, M. Lewenstein, and P. Zoller, Phys.

Rev. Lett. 80, 2972 (1998).
[6] E. J. Mueller, P. M. Goldbart, and Y. Lyanda-Geller, Phys.

Rev. A 57, R1505 (1998).
[7] J. Langer and V. Ambegaokar, Phys. Rev. 164, 498 (1967);

D. McCumber and B. Halperin, Phys. Rev. B 1, 1054
(1970).

[8] Y. S. Kivshar and B. Luther-Davies, Phys. Rep. 298, 81
(1998).

[9] T. Hong, Y. Z. Wang, and Y. S. Huo, Phys. Rev. A 58, 3128
(1998).

[10] S. A. Morgan, R. J. Ballagh, and K. Burnett, Phys. Rev. A
55, 4338 (1997).

[11] A. D. Jackson, G. M. Kavoulakis, and C. J. Pethick, Phys.
Rev. A 58, 2417 (1998).

[12] A. E. Muryshev, H. B. v. Linden v. d. Heuvell, and G. V.
Shlyapnikov, Phys. Rev. A 60, R2665 (1999); P. O.
Fedichev, A. E. Muryshev, and G. V. Shlyapnikov, Phys.
Rev. A 60, 3220 (1999).

[13] In contrast, the velocity of vortices relative to the ambient
superfluid is fixed by the local gradient of the background
density: the price of topological stability is a reduced phase
space, in which vortex x and y coordinates are canonically
conjugate to each other. See B. Y. Rubinstein and L. M.
Pismen, Physica (Amsterdam) 78D, 1 (1994).

[14] An equation similar to (10) is stated without derivation in
Ref. [3], but (when translated into our units) without the
factor of 1�2. This discrepancy may be seen in a coordinate-
free way, by noting that in a harmonic trap the GPE as
written in [3] implies the same frequency for the collective
dipole mode as is given by the soliton equation of motion
given in Ref. [3]. The same equation found in [3] is derived
in Ref. [10] by assuming that the soliton does not move
relative to the background; this may be achieved only in a
locally harmonic trap, in which case the result agrees with
our Eq. (12). Reference [9] proposes �q�r�q��21�2 constant,
but mentions that oscillation actually occurs instead.

[15] We use the split-operator technique described in J. A. C.
Weideman and B. M. Herbst, SIAM J. Numer. Anal. 23,
485 (1986).

[16] Th. Busch and J. R. Anglin (to be published).
2301


