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Fast Time-Evolution Method for Dynamical Systems
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A fast time-evolution method is developed for systems for which the dynamical behavior can be
reduced to the eigenvector/eigenvalue problem. The method does not use the eigenvectors/eigenvalues
themselves and is based on a polynominal expansion of the formal operator solution in the eigenfrequency
domain. It is complementary to the standard time-integration approaches and allows one to calculate or
simulate the state of a system at arbitrary times. The time evolution of, e.g., classical harmonic atomic
systems and quantum systems described by linear Hamiltonians can be treated by this method.

PACS numbers: 02.60.Cb, 02.70.Ns, 63.90.+ t
Suppose that the time-evolution problem for a dynami-
cal system can be reduced to the eigenfunction-eigenvalue
problem. If the eigenfunctions and corresponding eigen-
values are known, then all dynamical variables describing
the system with certain initial and boundary conditions can
be found at any other moment of time. Let us suppose that
the eigenfunctions and eigenvalues of the system exist but
cannot be found either analytically or numerically (e.g.,
because of the very large number of variables involved).
The question is can we predict (calculate or simulate) the
dynamical state of the system at any moment of time know-
ing only the equations of motion, initial conditions, and the
fact that the eigenfunctions and eigenvalues exist? The an-
swer is positive (obvious in the case of an available ana-
lytical solution) and the standard but inefficient way uses
numerical time-integration schemes, according to which
normally many integration time steps have to be used in
order to reach a desired moment of time (see, e.g., [1]).
Such schemes are applicable to general dynamical sys-
tems which are not necessarily described by eigenfunc-
tions and eigenvalues and therefore the advantage related to
the existence of eigenfunctions and eigenvalues is not used
at all.

In this Letter, we suggest a general, numerically effi-
cient approach for the solution of the dynamical evolution
problem for systems which can be described by eigenfunc-
tions and eigenvalues. Our approach is quite opposite to
the time-integration schemes treating the problem in the
time domain. Instead, we solve the time-evolution prob-
lem in the frequency (eigenvalue) domain directly using
the fact of the existence (only) of eigenfunctions and eigen-
values. This gives us an opportunity to find all dynamical
variables at any moment of time using, in fact, only one
time-evolution step of any required length. Such an ap-
proach is applicable to a broad class of dynamical systems
which includes, e.g., some quantum mechanical systems
characterized by time-independent Hamiltonians and clas-
sical harmonic atomic systems described by a dynamical
matrix. Among the physical problems to which this fast
evolution method (FEM) can be applied include stochastic
transport theory [2], quantum (and classical) diffusion and
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electron-localization problems [3,4], wave propagation in
disordered atomic structures [5,6], etc.

The basic idea of the FEM suggested here is to expand
the formal (operator) solution of the problem in a series
of suitable (Chebyshev) polynomials defined on the set of
Hermitian operators. The coefficients in such expansions
depend on time (and external field parameters) and on
the form of the time-evolution operator only (not on the
number of variables and their type, i.e., the dimensionality
of the linear vector space), while the polynomials defined
on Hermitian operators can be easily treated numerically
in their matrix representation. The idea for the FEM came
from the kernel polynomial method [7] for the calculation
of the spectral functions for large systems and from the
unstable oscillator method [8], exploiting the idea of a
large time-integration step.

The FEM is easily adapted for computations. It can
treat numerically a large number of dynamical variables
(&107) [9] and the computation time scales linearly with
the number of variables and evolution time in the case of
systems characterized by sparse matrices.

Let us consider a system, a dynamical state of which can
be described by a vector, u�t� in an N-dimensional linear
vector space spanned by the basis set �s1, . . . , sN � evolving
with time t according to the following equation of motion:
�T̂�t� 1 Â�u � 0, with T̂�t� being a time-evolution opera-
tor and Â being the time-independent linear Hermitian op-
erator responsible for interactions. Two applications of
such an equation are straightforward. For classical motion
of Na coupled harmonic oscillators in D-dimensional real
space, T̂ � ≠2�≠t2, �si� (i � 1, . . . , DNa) could be a site
basis and A then is a dynamical matrix in the site represen-
tation [10]. In the quantum case, T̂ � 2i≠�≠t (h̄ � 1),
�si� is a finite basis (e.g., the site basis for the tight-
binding and the Anderson Hamiltonians [3]) suitable for a
particular problem and H � A is the Hamiltonian matrix
in the same representation, Hij � �sijĤjsj�. In the general
case, the operator T̂ can be any integrodifferential opera-
tor, for which an analytical or numerical solution, u�t, l�,
of the auxiliary equation, �T̂�t� 1 l�u � 0 (with l being
a scalar, e.g., an eigenvalue of the matrix A), is available.
© 2000 The American Physical Society



VOLUME 84, NUMBER 11 P H Y S I C A L R E V I E W L E T T E R S 13 MARCH 2000
In that case, the FEM described below is directly applica-
ble. In what follows, for definiteness, we consider mainly
the classical motion problem, bearing in mind that, e.g.,
the quantum case can be treated similarly.

The formal operator solution (in the matrix representa-
tion) of the classical harmonic motion problem [with the
initial conditions in the form u�t � 0� � u0 and �u�0� �
v0] for the displacement vector u of Na coupled particles
can be written as

u�t� � cos�
p

A t�u0 1 �A21�2 sin
p

A t�v0 , (1)

which is obvious for a matrix A in its eigenvector (diag-
onal) representation and can be easily obtained by linear
transformation to another basis (e.g., site basis) in which
the matrix A is not necessarily diagonal. We assume that
the dynamical matrix A in the site basis and initial vectors
u0 and v0 are known, while the eigenvectors/eigenvalues
of A exist but are not available (because of, e.g., a large
number of variables) and our aim is to find u�t� at an ar-
bitrary time t. The formal solution is of no direct use for
this aim because the dynamical matrix A in the site basis
is not diagonal in general (because of couplings between
oscillators) so that the symbolic scripts, e.g., �cos

p
A t�u0,

in Eq. (1), should be understood as the power series (for
example, Taylor) for this function around, e.g., t0 � 0.
The expansion in time is the basis for the numerical time-
integration schemes (e.g., Verlet [1]), according to which a
desired time t can be reached by making a necessary num-
ber of small time steps for which the Taylor expansion is
appropriate.
An alternative way to the integration schemes based on
time expansions relates to the expansion of the formal so-
lution Eq. (1) in the eigenvalue domain of the dynamical
matrix. Let us consider the time t as a parameter and A as a
matrix variable for the functions cos

p
A t and sinc

p
A t �

sin
p

A t�
p

A t. These functions can then be expanded in a
series of the appropriate complete set of functions fp�A�
with time-dependent coefficients. The choice of the basis
set for the expansion is dictated by the following require-
ments. The functions fp�A� preferably should be poly-
nomials because the variable A is a matrix and it is easy
to treat them computationally for polynomials. The func-
tions fp�A� have to be defined on a finite interval be-
cause the spectrum of A is bounded. The coefficients in
the expansion should be easily and rapidly computed. All
these requirements are met by the Chebyshev polynomi-
als Tp�A0� � cos� p cos21A0� [7] which are the complete
set for the matrix A0 � 2A�lmax 2 I (with lmax being
the maximum eigenvalue) having the spectrum in the in-
terval 	21, 1
. The formal solution can then be rewritten as
follows:

u�t� �

" X̀
p�0

ap�t�Tp�A0�

#
u0 1

"
t

X̀
p�0

bp�t�Tp�A0�

#
v0 .

(2)

In practice, the infinite upper limit in the series above can
be replaced by P 2 1, with P being the appropriate (cut-
off) number of polynomials which give the most significant
contributions in the series (see Fig. 1 and below). The
expansion coefficients cp�t� [ap�t� and bp�t� in Eq. (2)]
can be easily calculated using the orthogonality conditions
for Tp ,
cp�t� �
2

�1 1 dp,0�P

P21X
q�0

cos

µ
ppq

P

∂
F

"s
lmax

2

µ
1 1 cos

pq
P

∂
t

#
, (3)
with dp,0 being the Kronecker symbol. The form of the
function F�x� is defined by the concrete form of the
time-evolution operator and, in the particular case of har-
monic vibrations of coupled oscillators, is F�x� � cos�x�
and F�x� � sinc�x� for the coefficients cp�t� � ap�t�
and cp�t� � bp�t�, respectively. These coefficients can
be rapidly computed using the fast Fourier transformation
because of the cosinelike functional form of the Cheby-
shev polynomials. We should also stress that expression
(3) is quite general and depends on the particular form or
properties of operator Â only via the maximum eigenvalue
lmax entering the argument of the function F.

The Chebyshev polynomials in Eq. (2) are defined by
the recursion relations: T0�A0�u � u, T1�A0�u � A0u,
and Tp11�A0�u � 2A0Tp�A0�u 2 Tp21�A0�u. These
polynomials actually enter the solution (2) as products
with the initial vectors u0 and v0. This fact significantly
improves the computational performance, so that for
a sparse matrix A this method scales linearly with the
number of variables and evolution time.
It appears that at fixed t the coefficients ap and bp first
oscillate with increasing p and then decay exponentially
with further increase of p (see Fig. 1 for the particular case
of the time evolution of a d-functional initial perturbation
in a linear harmonic atomic chain). Such behavior of the
coefficients ap and bp with p allows us to truncate the
series in Eq. (2) at a certain order P of the polynomials.
The number of polynomials used in the expansion, not
surprisingly, grows with time t, and the maximum order of
the polynomials (number of roots of the polynomial) can
be estimated as the number of oscillations with a typical
frequency, v� �

p
l� in time t, i.e., P � v�t�p . The

typical frequency is normally of the same order as the
maximum frequency, v� � xvmax, with x � 1 [in
the case of a linear chain, the value of x is roughly
x � 1.6 (see Fig. 1)]. The rest of the series for the
expansion coefficients with p $ P does not give a signifi-
cant contribution because of the very rapid (exponential)
decrease of ap and bp with increasing p.
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FIG. 1. The magnitude of the expansion coefficients, jap j, in
Eq. (2) as a function of the order p of the Chebyshev polynomi-
als for different evolution times t as indicated (with vmax � 2
relevant for a 1D ideal atomic linear chain model).

The FEM developed here can also be used as an elemen-
tary single-step calculation procedure in the integration al-
gorithm, but the time step can be arbitrary. This means
that an efficient integration method based on the Cheby-
shev polynomial expansion can be used to solve the equa-
tion of motion for the system in question. It appears to be
much faster and more accurate than other known schemes,
e.g., the Verlet algorithm. In order to compare its perfor-
mance with the popular Verlet scheme, we have computed
the Green function for the simplest harmonic model, an
ideal linear chain of atoms coupled to the nearest neigh-
bors only (see, e.g., [10,11], and references therein) with
periodic boundary conditions. The potential energy of such
a model is V � �1�2�

P
n�un 2 un11�2, assuming that all

masses, mn � 1, interatomic distances, an,n11 � 1, and
spring constants, kn � 1, with a resulting vmax � 2. Such
a choice of model has been dictated by two reasons: (i) a
displacement pattern with initial conditions, un�0� � dnn0

and �un�0� � 0, contains all the eigenmodes of the system,
and (ii) the solution is known analytically [10], uexact

n �t� �
J2n�2t� [with Jm�x� being the Bessel function], allowing
us to judge the quality of the approximate numerical so-
lutions obtained by the FEM, uFEM�t�, and by the Verlet
method, uVer �t� (see Fig. 2). Approximate solutions have
been found numerically for N � 104 atoms and t � 4000
TABLE I. Comparison of the performance of the simple Verlet (leapfrog) method and FEM for the time evolution of a d-functional
displacement perturbation in an ideal linear harmonic chain, with e � juexact 2 uj and egain � �juj�juexactj� 2 1 (for u � uFEM

or u � uVer ).

Quantity Verlet Verlet Verlet FEM FEM FEM

Time step t 0.01 0.1 1 1 10 4000
Number of steps Nt 4 3 105 4 3 104 4 3 103 4 3 103 400 1
Order P for FEM · · · · · · · · · 9 25 4105
CPU�R10 000 time (sec) 760 77.0 54.4 217 49.7 18.7
e 5.5 3 1022 0.82 0.98 9.5 3 10213 8.4 3 10213 1 3 10212

egain 25 3 1024 24 3 1024 2 3 1023 25 3 10213 5 3 10214 21 3 10215
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FIG. 2. Displacement pattern (the displacement ui of atom i
vs its equilibrium coordinate Ri � i) for a d-functional ini-
tial displacement perturbation at i � 5000 in an ideal linear
harmonic chain of 104 atoms at vmaxt � 4000: (a) the exact
solution, uexact

i ; (b) the difference between the approximate so-
lution obtained by the Verlet method (with the integration time
step, t � 0.01, and the number of steps, Nt � 4 3 105) and
the exact solution, uVer

i 2 uexact
i ; (c) the difference between the

approximate solution obtained by the FEM (with the integration
time step, t � 4 3 103, the number of steps, Nt � 1, and the
maximum order of the polynomials, P � 4105) and the exact
solution, uFEM

i 2 uexact
i .

(vmaxt � 8000). The results presented in Table I and in
Fig. 2 show that the FEM is much faster and much more
precise (cf. Figs. 2b and 2c). Indeed, the Verlet method
can be either relatively fast but not precise (the third col-
umn in the Table) or relatively precise but slow (the first
column in the Table) in comparison with the always pre-
cise, very fast single step (the sixth column) and relatively
fast, multiple step (fourth column) FEM. The dramatic
increase in speed for the FEM is related to the relatively
small number of matrix-vector operations needed as com-
pared to the Verlet scheme. As follows from the Table
(cf. the fourth, fifth, and sixth columns), the strategy in
accessing the best performance for the FEM is to choose
the smallest number of integration steps, preferably just a
single evolution step (sixth column) to the desired time t.

The FEM can be easily generalized for a classical system
subject to an external force field, Fext�R�0�

i , t� (with R
�0�
i
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being the equilibrium positional vector of atom i), and
described by an equation of motion in the form, ü 1

Âu � ĈFext�R�0�
i , t�, with C being the matrix represen-

tation of the coupling operator Ĉ of the external field with
the system. In the case of an electromagnetic field, for
example, this matrix contains atomic charges (around the
diagonal for local interactions and in a distributed fashion
for nonlocal interactions). Considering an external field in
the form Fext�R�0�

i , t� �
P

j fext
j �R�0�

i � exp�ivjt�, with the

time-independent force field fext
j �R�0�

i �, depending on the

equilibrium atomic positions R
�0�
i and arbitrary initial con-

ditions, we can easily find the nonsingular formal solution
of the problem and expand it in Chebyshev polynomials
(to be published elsewhere).

We have also tested the method for more complicated
atomic dynamical problems, such as the wave-propagation
problem in disordered structures (see, e.g., [5,6,11]), and
found excellent performance there (the results for the Ioffe-
Regel crossover analysis by means of wave-packet propa-
gation will be published elsewhere).

In conclusion, we have developed a new fast evo-
lution method for dynamical systems characterized by
linear Hermitian interaction operators and quite general
time-evolution operators (e.g., quantum mechanical sys-
tems defined in a finite linear vector space and classical
coupled harmonic oscillators). The advantage of the
method lies in its computational efficiency (fast and
precise, scaling linearly with the number of variables and
evolution time) and the ability to treat large dynamical
systems containing up to 107 variables.
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