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Enhanced Heat Capacity and a New Temperature Instability in Superfluid 4He in the Presence
of a Constant Heat Flux Near Tl
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We present the first experimental evidence that the heat capacity of superfluid 4He, at temperatures very
close to the lambda point Tl, is enhanced by a constant heat flux Q. The heat capacity at constant Q, CQ ,
is predicted to diverge at a temperature Tc�Q� , Tl at which superflow becomes unstable. In agreement
with previous measurements, we find that dissipation enters our cell at a temperature, TDAS�Q�, below
the theoretical value, Tc�Q�. We argue that TDAS�Q� can be accounted for by a temperature instability at
the cell wall, and is therefore distinct from Tc�Q�. The excess heat capacity we measure has the predicted
scaling behavior as a function of T and Q, but it is much larger than predicted by current theory.

PACS numbers: 67.40.Kh, 64.60.Ht, 67.40.Bz, 67.40.Pm
There has been intense recent interest in the superfluid
transition of liquid 4He in the presence of a constant heat
flux Q because it provides an ideal testing ground for
the study of phase transitions under dynamical conditions
[1–11]. A heat flux induces a counterflow between the
superfluid and the normal fluid, which gives the system
an extra degree of thermodynamic freedom and depresses
the superfluid density rs. These effects are predicted
to lower the temperature at which superfluidity vanishes,
and to have a significant influence on the thermodynamic
properties.

In particular, superfluidity is destroyed at a tempera-
ture Tc�Q� [12] where superflow becomes unstable be-
cause ≠Q�≠ys � 0, where ys is the superfluid velocity.
It is easy to show [1,2] that the heat capacity CQ also di-
verges at this temperature. The instability occurs due to
the depression in rs, which limits the ability of the su-
perfluid to conduct heat since, according to the two fluid
model, Q � 2rsysST , near the lambda point, where T is
the temperature and S the entropy. The instability occurs
along a curve in the T -Q plane of the form

tc�Q� �
Tl 2 Tc

Tl

�

µ
Q
Q0

∂x

. (1)

Theories [9,10,13] give x � 1�2n � 0.746 where n is
the correlation length exponent. Haussman and Dohm
(HD) applied renormalization-group theory to the problem
and found Q0 � 7395 W�cm2 [11], although Haussmann
recently modified this prediction to be 6571 W�cm2 [ 3 ].

We have measured CQ in the range 1 # Q #

4 mW�cm2. A typical result, for Q � 3.5 mW�cm2,
is shown in Fig. 1. CQ agrees well with the Q � 0
heat capacity data for all temperatures lower than about
1 mK below Tl. Between 1 and 0.5 mK below Tl, a
significant increase of the heat capacity is observed. This
is the first direct experimental evidence for the increase
in CQ near Tc�Q�. The increase is much larger than
predicted [1,2], but a recent theory by Haussmann [3],
0031-9007�00�84(10)�2195(4)$15.00
shown in the figure, comes closer to the experimental
result than earlier theories. Just after the point marked a

in Fig. 1, a sudden increase in thermometer noise signals
the breakdown of superfluidity in our cell. In a thermal
conductivity experiment, Duncan, Alhers, and Steinberg
(DAS) [4] observed that the onset of thermal resistance
occurs at a temperature we call TDAS�Q�. They found
that TDAS�Q� obeyed the same power law as Tc�Q�, but
with x � 0.813 6 0.012 and Q0 � 568 6 200 W�cm2.
We identify the temperature at which dissipation enters
our cell to be equal to TDAS�Q�, which is always below
Tc�Q�. To understand our result, one must understand
why the DAS phenomenon occurs.

There have been several explanations for the discrepancy
between the theoretical prediction of superfluid breakdown
and the experimental results. Because the order parameter

FIG. 1. Q � 3.5 mW�cm2. Thick solid line: CQ for Q � 0
(rounded for gravity); thin solid line: Haussmann’s theory [3]
(rounded for gravity); solid circles: data from the average of the
top and bottom thermometers; open circles: data from the top
thermometer only; a: the last point before dissipation enters
the cell; b: the change in the boundary resistance affects the
bottom thermometer; g: the maximum temperature of the data
of FBKA [17]. Inset: schematic diagram of the cell.
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does not go to zero at Tc�Q�, HD [11] suggested that the
transition is like a spinodal line of a first-order phase tran-
sition. This implies that, when approaching Tc�Q� from
the superfluid side, fluctuations will induce the transition
to occur at a lower temperature. Liu and Ahlers (LA) [6]
identify this lower temperature with TDAS�Q�. Further-
more, they report the observation of a region of small but
finite resistivity that they believe lies between TDAS�Q�
and Tc�Q�. An experiment by Murphy and Meyer [7]
confirmed the existence of this anomalous dissipative re-
gion, but called LA’s placement of the region into ques-
tion. An alternative explanation is given in the theory by
Haussmann [3]. He calculated the thermal conductivity
of superfluid 4He in the presence of both a heat current
and gravity, and identifies TDAS with a gravity dependent
transition.

We propose a quite different explanation of TDAS. A
heat flux Q, flowing across a solid wall into superfluid
helium, produces a thermal gradient in the fluid within a
correlation length of the wall [14]. The resulting ther-
mal resistance, Rb � DTb�Q, is known as the singular
contribution to the Kapitza resistance. Rb is thought to
diverge when the mean boundary temperature approaches
Tl. We will show that if one assumes only that DTb

is linear in Q, then there is a temperature instability
that drives the superfluid-normal fluid interface into the
cell when the bulk superfluid temperature is very close
to TDAS�Q�.

A constant heat flux, Q, may be maintained in a bulk
sample of superfluid helium at a fixed temperature, TSF ,
by flowing heat into one wall of the cell and out of the
other. At the wall where the heat flows into the cell,
the temperature in the boundary layer is higher than TSF .
The opposite is true at the wall where the heat exits the
cell. It is found that the data for Rb at both walls col-
lapse onto a single curve if Rb is expressed as a function
of the mean boundary temperature Tb � �TSF 1 TW ��2,
where TW is the temperature of the superfluid next to the
wall [15].

Measurements [15–17] indicate that a logarithmic plot
of the singular boundary resistance Rb versus the reduced
boundary temperature, tb � 1 2 Tb�Tl, is nearly a
straight line, so that

DTb � TW 2 TSF � QRb � Qb�tb�2z ,

TW 2 TSF � Qb

µ
1 2

�TW 1 TSF�
2Tl

∂2z

,
(2)

where b and z are fitting parameters to the experimental
singular Kapitza resistance data.

Equation (2), which is merely an empirical fit to ex-
perimental data, has an instability built into it. When
dDTb�dTSF ! `, any change in TSF causes TW to run
away. This is precisely the behavior observed in the experi-
ments. If we solve Eq. (2) for TSF and apply this condition
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in the form dTSF�dDTb � 0, we find that the instability
occurs when

TW 2 TSF �

µ
2Tl

z

∂z��z11�
�bQ�1��z11�. (3)

Setting Eq. (2) equal to Eq. (3) and rearranging the
terms, we find the reduced temperature of the bulk super-
fluid, ti , when the boundary temperature goes unstable,

ti �
Tl 2 Ti

Tl
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,

(4)

where, for typical values of b and z, Q0 � 700 W�cm2

and x � �z 1 1�21 � 0.8. Thus the instability tempera-
ture is close to TDAS. To make a more accurate com-
parison, we note that a logarithmic plot of the singular
boundary resistance data has some curvature, so it cannot
be fitted adequately by single values of z and b. However,
for any tb , one can do a local linear fit to find accurate
values of b and z. By once again setting Eq. (2) equal to
Eq. (3), but this time rearranging the terms differently, we
find that a given reduced boundary temperature, tb , will go
unstable at a value of Q � Qi ,

Qi �
2Tl

zb
�tb�z11. (5)

We can now proceed directly from the boundary resis-
tance data of Fu, Baddar, Kuehn, and Ahlers (FBKA) [17]
to a prediction of superfluid breakdown. We simply find a
local fit for each of nine values of tb , and then plot Eq. (4)
versus Eq. (5) on the same graph as the DAS data. This
is shown in Fig. 2. The results predicted from the singu-
lar Kapitza resistance data are at larger reduced tempera-
tures than the DAS data, but the agreement with the DAS
data is excellent nevertheless. A fit to our predicted points
in the form ti � �Q�Q0�x gives x � 0.8163 6 0.0023
and Q0 � 813 6 9 W�cm2, which is consistent with the
DAS fit.

From the above equations, one can show that �Tl 2

Ti���TW 2 Ti� � �1 1 z��2. Since z , 1 for all tb this
implies that, when the temperature of the cell becomes un-
stable at Ti , TW . Tl. One might expect that as TW ! Tl,
DTb will depend nonlinearly on Q, and Eq. (2) will no
longer hold true. If this is the case, the instability will
enter the cell at a lower temperature than if the tempera-
ture drop across the boundary were to remain linear in Q.
We would therefore expect the predicted points shown on
Fig. 2 to lie slightly below an extrapolation of the DAS fit
to larger reduced temperatures. For comparison, we have
also plotted the reduced temperature of the bulk superfluid
when TW � Tl for the same nine data ranges of FBKA.
This shows an even closer match to the DAS results.

In summary, we conclude that the breakdown of super-
fluidity in our cell, previously observed by DAS and others,
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FIG. 2. The breakdown temperature as a function of Q.

is a boundary effect, quite distinct from the physics treated
by recent theories [1–3,9–11,13]. It should be possible to
devise experiments to test this hypothesis.

Our measurements of CQ were taken in a cell con-
structed of two 6.985 cm diameter annealed oxygen-free
high conductivity copper end plates connected by a
0.640 mm high stainless-steel sidewall. (See the inset
of Fig. 1.) The small cell height was chosen so that
it would minimize gravitational rounding of the heat
capacity yet still be large enough to avoid finite-size
effects. The cell was filled with ultrapure 4He (3He
concentration , 0.07 ppb) and then sealed with a me-
chanical valve. A bubble filling 0.5% of the volume was
trapped during this procedure, ensuring that heat capacity
measurements would be taken at saturated vapor pressure.
The helium temperature was measured with two high
resolution paramagnetic salt thermometers (HRTs) [18],
with a resolution of 5 3 10211 K�

p
Hz, located on the

top and bottom end plates of the calorimeter.
The adiabatically shielded calorimeter was connected

to a 1.3 K continuously operated He-4 refrigerator via a
three stage thermal isolation system. The third stage was
connected to the calorimeter through a very large thermal
impedance (867 K�W). The temperature of this stage was
controlled to 60.2 mK with another HRT. A constant heat
flux, Q, was applied by a wire heater at the bottom of the
calorimeter, and extracted from the top through the large
thermal impedance.

Measurements began when the sample temperature was
approximately 4 mK below Tc�Q�. A series of heat pulses
of �0.7 mJ each were applied using a second wire heater
also located at the bottom of the cell. Approximately two
minutes before each heat pulse, the temperature of the
third stage was automatically adjusted so that the drift rate
of the sample was less than 1 3 10211 K�sec. The third
stage was then held at a constant temperature until approxi-
mately two minutes after the heat pulse, when it was then
adjusted again in preparation for the next heat pulse. This
procedure helped to compensate for the changing heat leak
to the thermal network. The sample was pulsed, raising its
temperature, until dissipation entered the cell, after which
the third stage temperature was lowered so that the he-
lium sample slowly cooled to its starting temperature. The
third stage was then adjusted to null the drift rate, and the
process began anew. This procedure was repeated con-
secutively 5 to 9 times per run so that the data could be
averaged.

The temperature of the helium was inferred by averaging
the measurements of the top and bottom thermometers, and
then subtracting off a term to correct for the asymmetry
between the top and bottom singular boundary resistances,
using the data of FBKA [17]. However, the temperature
range for these data comes only as close to Tl as the point
marked g in Fig. 1. Between that point and the point
marked b we, in effect, made our own measurements of the
singular Kapitza resistance by choosing values of Rb�tb�
such that the top and bottom HRTs both gave the same
value for TSF . These values of Rb turned out to be a smooth
extrapolation of the data of FBKA.

The HRTs used in our experiment do not give a reading
of the absolute temperature. It was therefore necessary to
fix the temperature scale for each run by matching a fea-
ture in our data with a previously measured quantity. We
did this by correlating the temperature at which dissipation
left our cell on the downward temperature ramps with
TDAS�Q�. This point was determined by observing the
temperature at which the noise of the bottom thermometer
suddenly decreased. We then fixed the temperature scale
of each thermometer by setting its temperature at this
point equal to TDAS�Q� 6 QRb , where Rb is the singular
boundary resistance. Thus, our thermometers were ad-
justed to read TW rather than the temperature inside the
copper, which would be affected by the regular Kapitza re-
sistance. The correctness of our identification of TDAS�Q�
is verified by the excellent agreement it produces between
CQ and the heat capacity at Q � 0, for temperatures
lower than about 1mK below Tl (see Fig. 1). The tem-
perature scale for Q � 0 is established by identifying Tl

experimentally.
At the point marked b in Fig. 1, the temperature steps

measured by the bottom thermometer suddenly became
larger than those measured by the top thermometer. This
phenomenon occurred at roughly the same value of TW at
the bottom surface for all values of Q used in our experi-
ment. This value of TW corresponds to a local correlation
length, j, of a few micrometers, which we believe to be of
the same order as the surface roughness of the wall. When
j becomes larger than the surface roughness, the effective
area through which heat passes from the interface into the
bulk helium is reduced, thereby increasing the apparent
Rb . The correlation length at the upper boundary never
becomes large enough to produce this phenomenon there.
Thus the points between b and a in Fig. 1 are measured
using the upper thermometer only, corrected by values of
2197
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FIG. 3. Differential heat capacity measurements for various
values of Q. The experimental data are terminated at b and
scaled against the Qc obtained by using Q0 � 6571 W�cm2.
Thick solid line: original theoretical prediction [1,2] (not
rounded for gravity); dashed line: Haussmann’s prediction
[3] (not rounded for gravity); thin solid line: fit to the
Q $ 2 mW�cm2 data.

Rb that are extrapolated from our own data and those of
FBKA.

Figure 3 shows the heat capacity enhancement, DCQ �
CQ 2 CQ�0, for a number of values of Q, plotted versus
�Q�Qc�2, where Qc�T � is obtained by inverting Eq. (1)
with Q0 � 6571 W�cm2. The data are taken at constant
Q, changing Qc by changing T . They are measured with
the average of the top and bottom thermometers, and are
therefore terminated at point b of Fig. 1. The quantity
DCQta , where a � 2 2 3n, is expected to depend only
on the ratio Q�Qc. The data agree well with this pre-
diction for all but the lowest heat currents. Theoretical
predictions for DCQ�Q�Qc�ta are also shown. At small
Q�Qc, where the depression of rs may be ignored, DCQta

should be proportional to Q2. Thus, plotted as we have
done in Fig. 3, all the data should fall on a single curve,
which should be a straight line at small Q�Qc. All of
our data for 2 mW�cm2 # Q # 4 mW�cm2 can be repre-
sented by

DCQta � A�Q�Qc�2, (6)

where A � 69 6 4 J�mol K. This value of A is much
larger than predicted by any current theory.

We have shown that it is possible to measure the en-
hancement of the heat capacity of superfluid 4He due to a
heat current, and that the enhancement is larger than pre-
dicted by theory. Thus, there is new physics to be exam-
ined near Tc�Q�. We have also argued that the dissipation
that limits the experimental approach to Tc�Q� is due to a
temperature instability at the cell wall arising from the sin-
gular boundary resistance. It should be possible to obtain
better heat capacity data, in the same temperature range
we have explored, using a penetrating sidewall thermome-
ter to make direct temperature measurements in the bulk
2198
of the helium sample, unaffected by the singular Kapitza
resistance. Ultimately, however, if our hypothesis is cor-
rect, only a microgravity experiment in a cell configured to
avoid the wall instability will suffice to examine the new
physics.
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providing us with their data, and to R. Duncan, R. Hauss-
mann, and P. Weichman for many helpful discussions. The
research reported in this paper was carried out in collabo-
ration between Caltech and JPL under a contract with
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