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Vacancy Interaction with Dislocations in Silicon: The Shuffle-Glide Competition
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Competition between the two alternative positions (shuffle and glide �111� plane subsets) for the core
of a 30± partial dislocation in Si is examined. Using a combination of ab initio total energy calculations
with finite temperature free-energy calculations based on an interatomic potential, we obtained free en-
ergies for the relevant vacancy-type core defects. Generally, the free energy of vacancy formation in the
core of a 30± glide partial dislocation is considerably lower (by more than 1 eV) than in the bulk. How-
ever, even at high temperatures, the predicted thermal concentration of the shuffle segments comprised
of a row of vacancies in the core is low, placing the 30± partial dislocation in the glide subset position.

PACS numbers: 61.72.Lk, 61.72.Bb, 61.72.Nn, 62.20.Fe
Because of their involvement in the processing and op-
eration of electronic devices, dislocations in semiconduc-
tors have attracted considerable attention over the past
two decades [1]. In all zinc-blende semiconductors, dis-
locations move in the �111� planes. However, due to the
nonprimitive unit cell, there are two distinct sets of �111�
planes: the closely spaced glide subset and the widely
spaced shuffle subset [2]. A priori, it is not clear which
of the two subsets is more important for dislocation mo-
bility [3]. Initially it was thought that dislocations should
be confined to the shuffle planes, since the lattice resis-
tance, or Peierls barrier, to dislocation motion between the
widely spaced atomic planes is generally lower. On the
other hand, high resolution electron microscopy (HREM)
images showed that perfect dislocations are, in fact, disso-
ciated into Shockley partials separated by a ribbon of stack-
ing fault [4]. Since stable stacking faults can exist only in
the glide subset, it seemed straightforward to conclude that
dislocations should belong to the glide planes, both in mo-
tion and at rest. Subsequently, theoretical work has been al-
most exclusively focused on the glide partial dislocations.

An alternative view on the shuffle-glide competition has
been proposed [5], where it was shown that dissociated
dislocations can exist both in the glide and in the shuffle
subsets. In the latter case, shuffle partials can be formed by
removal/insertion of a row of atoms from/into the core of
the glide partials. It was also suggested that the partials can
simultaneously exist in both subsets, with shuffle and glide
segments alternating along the dislocation. Surprisingly,
this idea of “shuffle-glide coexistence” was largely ignored
in the literature as if the exclusive role of the glide partials
were well established. Yet, HREM observations indicate a
significant concentration of intrinsic defects in the core of
partial dislocations [4] leaving open the fundamental issue
of shuffle-glide competition.
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In this Letter we examine the energetics of glide and
shuffle partial dislocations in Si in a series of calculations
in which the concentration of vacancies in the core of a 30±

partial dislocation varies from zero for a pure glide core to
100% for a pure shuffle core. Our approach is a combi-
nation of ab initio calculations for the zero temperature
energetics with classical molecular dynamics (MD) simu-
lations for the temperature-dependent free energies of the
relevant core configurations. The results provide the first
direct theoretical evidence for a predominant role of the
glide partial dislocations in Si, justifying the recent flour-
ish of theoretical work on the core structure and mobility
mechanisms of the glide partials [6–9].

Of the two most important dislocations in Si, 90± and
30± partials, our focus is on the latter, for the following
reasons. First, core structure of the 30± glide partial is
reasonably well established [9], whereas the same is not
the case for the 90± glide partial [6,8,10]. Second, both
theoretical and experimental data suggest that the over-
all mobility of the dissociated perfect dislocations in Si is
controlled by the slower 30± partial [11]. Finally, there is
considerable evidence linking the electrically active cen-
ters, observed in the electron paramagnetic spin resonance
(ESR) measurements, to vacancies in the core of 30± par-
tial dislocations [12,13].

For ab initio calculations, we constructed orthorhom-
bic supercells containing 144 or 192 atoms, in order to
have three and four core atoms per dislocation line, respec-
tively. A dipole of 30± partial dislocations was introduced
by displacing the atoms according to the known solution
for the displacement field of a dislocation dipole [2]. The
cell geometry was such that dislocations of the dipole were
no closer than 13.2 Å from each other, which was far
enough to prevent the core-core overlap. Figure 1 shows
a schematic representation of the 30± partial dislocation
© 2000 The American Physical Society
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FIG. 1. Atomic structure of the 30± partial viewed from above
the �111� glide plane. White and gray atoms lie above and below
the glide plane, respectively. Core atoms are shown in black.

core in the �111� glide plane, after 2 3 1 core reconstruc-
tion. There are two types of atoms in the core: fourfold
coordinated “reconstructed” (atoms A and B) or threefold
coordinated “unreconstructed” (atom C). Positions of all
atoms were initially relaxed by a conjugate gradient al-
gorithm using a newly developed environment-dependent
interatomic potential (EDIP) for silicon [14]. In the initial
relaxation procedure, the shape of the supercell was ad-
justed using the Parrinello-Rahman method. The final re-
laxed structures obtained with EDIP were then used as the
initial configurations for subsequent relaxations with the
ab initio forces. The latter were evaluated within the lo-
cal density approximation (LDA) of the density-functional
theory (DFT) [15]. The Kohn-Sham equations were solved
within the Car-Parrinello approach using pseudopotentials
[16]. The valence electron wave functions were expanded
in a plane-wave basis set, with kinetic energy cutoff of
10 Ry. Sampling of the Brillouin zone was performed us-
ing the �0, 0, 1�2� point. Relaxation was performed until
the Hellmann-Feynman forces on all atoms were smaller
than 0.001 Ry�a.u.

First, we consider a single vacancy in the dislocation
core, using a supercell of 192 atoms. In Fig. 1, atoms
A and B of the reconstruction dimer maintain the usual
fourfold coordination, although the reconstruction bond
between them is 5% longer than the perfect bulk bond.
By removing atom A and relaxing the resulting structure,
a vacancy is created in the dislocation core. The formation
energy of this vacancy is 2.36 eV and should be compared
to 3.64 eV for the formation energy of a vacancy in the
bulk. This latter value was obtained after introducing a
single vacancy in the same supercell, but without the dislo-
cation dipole. This bulk vacancy features a nearly perfect
D2d symmetry, in agreement with an earlier calculation
[17]. The difference of 1.28 eV between the two forma-
tion energies is consistent with another earlier calculation
[18] and represents the binding energy of a vacancy to the
core of a 30± partial dislocation. This core defect has been
identified by ESR measurements, and is usually referred
to as the Si-K1 center [12]. By removing the second atom
B, a di-vacancy is created in the core. This defect has a
formation energy of 3.74 eV (1.87 eV�vacancy), which is
only slightly higher than the formation energy of a single
vacancy in the perfect crystal, at 3.64 eV. The di-vacancy
defect can be related to the so-called Si-K2 center identi-
fied in ESR experiments with a row of n vacancies (n $ 2)
in the core of a 30± partial dislocation [12]. By further
removing all atoms from the dislocation core, a shuffle-
vacancy (SV ) partial dislocation is created. For this case,
we obtain formation energy of 1.95 eV�vacancy, which is
only slightly different from that for the di-vacancy, indi-
cating that interaction between neighboring di-vacancies
in the core is weak.

Two centers discussed so far, Si-K1 and Si-K2, are as-
sociated with the vacancies in fourfold coordinated core
atoms. However, a core atom can also be threefold co-
ordinated (atom C in Fig. 1), which is usually referred to
as a reconstruction defect (RD). A threefold coordinated
vacancy is created by removing atom C from the core.
Such a configuration has been identified in ESR measure-
ments and labeled the Si-Y center [12]. From our ab initio
calculations, using a supercell with 144 atoms, we find
that the formation energy of a vacancy in the RD center is
0.89 eV. This is markedly lower than the formation energy
of a fourfold coordinated core vacancy. The formation en-
ergies of all vacancy-type defects are significantly lower
than the corresponding formation energy of a vacancy in
the bulk, indicating that the glide dislocation core provides
a center of preferred sites for vacancy nucleation. These
results are consistent with recent calculations which show
that the stacking fault also provides preferred sites for de-
fect nucleation [19]. From the point of view of equilibrium
thermodynamics, our results imply that the concentration
of vacancies in the glide core should be higher than in
the bulk.

In principle, in order to compare the relative concentra-
tions of bulk and core vacancies at finite temperatures, one
has to calculate free energies of the relevant defect con-
figurations. Mindful of the fact that free-energy calcu-
lations are almost prohibitively expensive when used in
combination with the total energy DFT methods, we
chose to carry out the necessary finite temperature simula-
tions using the computationally inexpensive semiempirical
EDIP model [14]. First, as a consistency check, we deter-
mined the zero-temperature formation energies of the
relevant defect configurations and compared them with the
corresponding DFT/LDA values reported above (Table I).
The good agreement between the EDIP and the ab initio

TABLE I. Per-vacancy formation energies and entropies of
various vacancy-type defects in the core of a 30± partial dis-
location. For reference, the values for a vacancy in the bulk are
also shown.

LDA (eV) EDIP (eV) Formation entropy �kB�

Bulk 3.64 3.25 4.3
Si-Y 0.89 1.45 1.6
Si-K1 2.36 2.11 2.9
Si-K2 1.87 1.79 2.2
SV 1.95 1.79 2.2
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results provides some assurance that the EDIP model
can give equally accurate description of the energetics of
partial dislocations at finite temperatures.

For the finite temperature simulations, we employed a
bigger, 864 atom periodic supercell containing a dipole
of fully reconstructed 30± glide partials of length 45.7 Å
(�1̄10� direction), separated by a stacking fault ribbon
20.0 Å wide (�112̄� direction). As earlier, the initial con-
figurations of the Si-K1 and Si-K2 defects were obtained
by removing, respectively, one (atom A in Fig. 1) and two
adjacent atoms (A and B) from one of the glide partials in
the dipole. For the Si-Y defect, the initial configuration
was obtained by removing one atom from the dislocation
core (atom C in Fig. 1). For the complete SV partial dis-
location, all the core atoms of both glide partials in the di-
pole were removed. The resulting defect structures were
relaxed using a combined simulated annealing/conjugate
gradient minimization scheme.

In order to determine the free energies of the vacancy-
type defects, or shuffle segments in the glide partial core,
we applied the recently developed reversible-scaling (RS)
method [20], which allows efficient calculation of free
energies using Monte Carlo (MC) or MD techniques. The
method is based on a dynamical scaling of the poten-
tial energy function, implemented through the adiabatic
switching method [21]. This particular approach allows the
determination of free energies as a function of temperature
using a single constant temperature run in a MC or MD
simulation.

Figure 2 shows formation free energies (per vacancy) as
a function of temperature for the Si-Y , Si-K1, and Si-K2
centers, the SV partial, and the single vacancy in the bulk
crystal. The symbols show the data determined using the
RS method. For comparison, we also evaluated the free en-
ergies within the harmonic approximation (HA) [22], us-
ing the partition function based on the “frozen” phonon
frequencies of the relaxed defect structures. The HA re-
sults are represented by the lines. The agreement between
the RS and HA values suggests that anharmonic effects
are minor and that the formation entropies are essentially
temperature independent. The values of the EDIP forma-
tion entropies are listed in Table I. The formation entropy
of 4.3kB for the single vacancy in bulk crystalline Si is in
good agreement with an earlier ab initio value [23] of 5kB.
For all vacancy-type defects in the 30± glide partial core
the formation entropies are found to be lower than in the
perfect crystal.

Assuming that the values for formation entropies
obtained with the EDIP function are reliable, we now
combine the LDA formation energies Ef with the EDIP
formation entropies Sf . The relative equilibrium concen-
tration CV of thermally nucleated vacancies in the recon-
structed core, defined as the fraction of sites in the core
occupied by vacancies, is then determined by

CV � exp�Sf�kB� exp�2Ef�kBT � . (1)
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FIG. 2. EDIP formation free energies per vacancy as a function
of temperature for several vacancy-type defects in the 30± glide
partial core. Symbols indicate RS values calculated for Si-K1
(�), Si-K2 (�), and SV (�). Lines are formation free energies
calculated within the harmonic approximation. For Si-Y defect
only HA results are shown (dotted line). For comparison, RS
(�) and HA formation free energies of a vacancy in the perfect
crystal are also shown.

For the Si-Y center, we included an appropriate prefactor
in the CV expression to account for the concentration of
RD centers in the dislocation core. For that we used the
RD formation energy of 0.65 eV reported earlier [9], and
the entropy of 0.3kB computed here for the EDIP model
using the HA method.

Figure 3 shows the contributions of the Si-Y , Si-K1, and
Si-K2 centers to the equilibrium concentration of vacan-
cies in a 30± glide partial dislocation. The relative equilib-
rium concentration of single vacancies along a bulk �1̄10�
atomic row is also shown. The predicted concentrations
of Si-Y and Si-K1 defects are much higher than the corre-
sponding vacancy concentration in the bulk �1̄10� atomic
row. At T � 1600 K, for example, the concentration of
vacancies in the glide core due to the Si-Y defects is about
1024, while the corresponding value in a bulk �1̄10� atomic
row is roughly 1029. Consistent with the experimental
findings, the concentration of the Si-Y center is the largest
of all the vacancy core defects [1], much higher than the
predicted concentration of the Si-K1 and Si-K2 defects.

Although the equilibrium concentration of vacancies in a
glide partial core is considerably higher than in the bulk, it
is still rather low. Even at temperatures around the melting
point, only one in each 104 sites is expected to be occu-
pied by a vacancy. This suggests that the concentration of
thermally nucleated shuffle sections is small and that 30±

partial dislocations in Si should belong to the glide set.
Strictly speaking, this conclusion pertains only to the par-
tial dislocations at rest and in local thermodynamic equi-
librium. This is because vacancy defects can be introduced
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FIG. 3. Concentrations CV of vacancy-type defects in the 30±

glide partial core as a function of temperature: Si-Y (dot-dashed
line), Si-K1 (full line), and Si-K2 (dashed line). The corre-
sponding equilibrium concentration in a �1̄10� atomic row in the
bulk crystal is also shown (dotted line).

in the core when the partials move under stress, especially
under conditions of vacancy supersaturation. Whether or
not this principal possibility is in fact realized in Si remains
an issue for further study.

In summary, we have investigated the interaction of va-
cancies with the core of a 30± partial dislocation in Si.
The predicted thermal concentrations of several vacancy-
related centers in the core are considerably higher than in
the bulk crystalline environment. Still, these concentra-
tions are too low to expect that shuffle-vacancy segments
of appreciable lengths will be present in the core. There-
fore, our results support the view that Shockley partial dis-
locations in Si belong to the glide subset.
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