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Finite Thermal Conductivity in 1D Lattices
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We discuss the thermal conductivity of a chain of coupled rotators, showing that it is the first example
of a 1D nonlinear lattice exhibiting normal transport properties in the absence of an on-site potential.
Numerical estimates obtained by simulating a chain in contact with two thermal baths at different tem-
peratures are found to be consistent with those based on linear response theory. The dynamics of the
Fourier modes provides direct evidence of energy diffusion. The finiteness of the conductivity is traced
back to the occurrence of phase jumps. Our conclusions are confirmed by the analysis of two variants
of this model.

PACS numbers: 44.10.+ i, 05.45.Jn, 05.60.–k, 05.70.Ln
The understanding of heat conduction in insulating
solids is a long-standing problem even in the simple 1D
context. The typical Hamiltonian used to model this class
of systems is

H �
NX

i�1

"
p2

i

2mi
1 V �qi11 2 qi� 1 U�qi�

#
, (1)

where mi represents the mass of the ith particle [1], V is
the potential energy of internal forces, and U is an on-site
potential representing possible interactions with an exter-
nal substrate.

Rigorous studies have shown that the thermal conduc-
tivity k diverges (in the thermodynamic limit) in homo-
geneous harmonic chains [2], as well as in any integrable
model, since the dynamics can be decomposed in that of
independent modes (phonons, solitons) freely propagating
along the chain. The addition of (isotopic) disorder leads
to a qualitatively different scenario depending on the pres-
ence of external forces. Systems interacting with a sub-
strate (SS) behave as insulators (vanishing conductivity) in
view of the exponential localization of the normal modes.
Conversely, isolated systems (IS) still exhibit anomalous
transport properties [3], because the localization length
of normal modes diverges in the limit of vanishing wave
numbers. In either case, normal transport is not observed,
suggesting that the nonlinear character of the microscopic
dynamics is a necessary ingredient for the emergence of
the Fourier heat-conduction law at the macroscopic level.

In fact, the first convincing numerical evidence of a
finite conductivity has been provided by the study of a
chaotic system: the ding-a-ling model [4], i.e., an SS sys-
tem where a set of particles harmonically anchored to an
external periodic lattice alternates with free particles, hav-
ing elastic interactions with them. The same conclusion
has been later confirmed by the study of the ding-dong
model [5], a modification of the previous system, where
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the free particles have been removed, while allowing elas-
tic scattering between the remaining ones.

On the other hand, the recent study of the more real-
istic Fermi-Pasta-Ulam (FPU) b model [V �x� � x2�2 1

x4�4, U � 0] has revealed a power-law divergence of the
thermal conductivity as k � N2�5 [6] (where N is the
chain length [7]). Such an anomalous behavior has been
explained by invoking the self-consistent mode coupling
theory [8] in the description of the effective evolution of
long-wavelength modes [9].

The apparent discrepancy with the previous results has
stimulated the numerical study of various models in the at-
tempt of identifying general rules. As a result, it has been
found that, in analogy with linear disordered systems, the
presence of an on-site potential plays a crucial role in de-
termining the qualitative behavior of a physical system.
In fact, all ISs discussed in the literature have revealed
an anomalous behavior of the thermal conductivity (in-
cluding, e.g., the diatomic Toda lattice [10]). Conversely,
all SSs (including the Frenkel-Kontorova model studied in
Ref. [11]) have been found to be characterized by normal
transport properties.

In this Letter, we show that a simple classification
scheme based on the presence or absence of an on-site
potential cannot alone account for the normal or anoma-
lous character of transport coefficients. In fact, we discuss
some 1D models where momentum is conserved and yet
the conductivity is finite.

(A) The rotator model.—The simplest example of a
classical-spin 1D model with nearest neighbor interactions
lies in the class (1) with V �x� � 1 2 cos�x� and U � 0.
This model can be read also as a chain of N coupled pen-
dula, where the pi’s and the qi’s represent action-angle
variables, respectively. It has been extensively studied
[12,13] as an example of chaotic dynamical system that
becomes integrable both in the small and high energy lim-
its, when it reduces to a harmonic chain and free rotators,
© 2000 The American Physical Society
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respectively. In the two integrable limits, the relaxation
to equilibrium slows down very rapidly for most of the
observables of thermodynamic interest (e.g., the specific
heat) [13]. As a consequence, the equivalence between
ensemble and time averages is established over accessible
time scales only inside a limited interval of the energy den-
sity ´. Here we shall discuss heat conduction for values of
the energy density corresponding to strongly chaotic be-
havior (i.e., half of the Lyapunov spectrum is convincingly
positive [14]).

(B) Numerical analysis of the thermal conductiv-
ity.—The most natural and direct way to determine k

consists in simulating a real experiment, by coupling the
left and right extrema of the chain with two thermal baths
at temperatures TL . TR , respectively. In our simulations
we have used Nosé-Hoover models of thermostats [15],
both because they can be easily implemented (integrating
the resulting equations with a standard algorithm) and
because of the smaller finite-size effects (due to the
unavoidable contact resistance).

With this setting, a nonequilibrium stationary state sets
in characterized by a nonvanishing heat flux J [6,16]:
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where fi � 2≠V �qi11 2 qi��≠qi � sin�qi11 2 qi� is
the interaction force and ji is the local flux at site i. The
total heat flux J has to be averaged over a sufficiently
long time span to get rid of fluctuations and to ensure the
convergence to the stationary regime. This can be tested
by monitoring the average heat flux and looking at the
scale of its fluctuations. As a result, we have verified
that 2 3 106 time units are sufficient to guarantee a few
percent of fluctuations in the worst cases.

The thermal conductivity is determined by assuming the
Fourier law, i.e., from the relation J � k=T , where =T
denotes the imposed thermal gradient. The simulations
have been performed for TL � 0.55, TR � 0.35, and chain
lengths ranging from N � 32 to 1024 with fixed boundary
conditions. The equations of motion have been integrated
with a 4th-order Runge-Kutta algorithm and a time step
Dt � 0.01. The results, reported in Fig. 1, clearly reveal
a convergence to a k value approximately equal to 7 (see
the circles). The dotted line represents the best data fit
with the function a 1 b�N : the agreement is very good,
showing that finite-size corrections to k are of the order
O�1�N�, as it should be expected because of the thermal
contacts. However, more important than the numerical
value of the conductivity is its finiteness in spite of the
momentum conservation.

In order to test independently the correctness of our re-
sults, we have performed direct microcanonical simula-
tions, which allow determining the thermal conductivity
through the Green-Kubo formula [17],

k �
1

T2

Z `

0
CJ�t� dt , (3)
FIG. 1. Conductivity k versus chain length N as obtained from
nonequilibrium molecular dynamics. Circles correspond to the
rotator model with temperatures TL � 0.55 and TR � 0.35; tri-
angles correspond to the double-well potential with TL � 0.04
and TR � 0.06. The two lines represent the best fit with the
function a 1 b�N . The two shaded regions represent the un-
certainty about the conductivity on the basis of the Green-Kubo
formula.

where CJ �t� � N�J�t�J�0�� is the flux autocorrelation
function at equilibrium and T is the temperature. A cor-
rect application of the above formula requires fixing the
energy density ´ in such a way that the kinetic tempera-
ture (defined as T � �p2�, in agreement with the virial
theorem) is close to the average value of the temperature
in the previous simulations. The choice ´ � 0.5 turns
out to be reasonable, as it corresponds to T � 0.46. In
the absence of thermal baths, the equations of motion are
symplectic, so that we have now preferred to use a sixth
order McLachlan-Atela integration scheme [18]. With the
adoption of periodic boundary conditions, not only the
energy but also the momentum is (in principle) exactly
conserved.

The correlation function has been computed by exploit-
ing the Wiener-Khinchin theorem, i.e., by antitransforming
the Fourier power spectrum. At variance with the FPU-b
model studied in Ref. [9], where a power-law convergence
to zero was observed, here CJ �t� exhibits a clean exponen-
tial decay (see Fig. 2). Moreover, the good overlap among
the three curves (computed for N � 128, 256, and 1024)
indicates that the correlations are independent of the sys-
tem size already for N � 128 rotators. The straight line,
added below for comparison, corresponds to an exponen-
tial decay with a time constant t0 � 30 in our adimensional
units.

As a result, the integral of CJ manifestly converges to a
finite value and is independent of N . The gray region in
Fig. 1 corresponds to the expected value of k taking into
account the statistical uncertainty. There is not only a clear
confirmation of a finite conductivity, but the numerical
value obtained with this technique is in close agreement
with the direct estimates.

(C) Dynamics in the mode space.—In order to clarify
the difference between the dynamics of the present model
and that of FPU-type chains, we have investigated the evo-
lution of the low-frequency Fourier modes, as they proved
2145
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FIG. 2. Correlation function CJ �t� of the total flux for 256,
512, and 1024 rotators (dashed, dot-dashed, and dotted lines,
respectively) for energy density ´ � 0.5. The correlation func-
tion has been computed by antitransforming the power spectrum
computed over more than 104 time units and averaged over 103

independent trajectories. The solid line, corresponding to the
exponential decay exp�2t�30�, has been added for reference.
The deviations observed at large times are due to an insufficient
statistics.

to be responsible for the anomalous behavior of such sys-
tems. In Fig. 3 we have reported the power spectra of some
long-wavelength modes. For the sake of comparison, the
same quantities are reported for a diatomic FPU chain that
is characterized by an anomalous transport. At variance
with the FPU model, in the rotators there is no sharp peak
(which is a signal of an effective propagation of corre-
lations [9]). Quite differently, the low-frequency part of
the spectrum is described very well by a Lorentzian with
half-width g � Dk2 (D � 4.3). This represents an inde-
pendent proof that energy diffuses, as one expects when-
ever the Fourier law is established.

(D) Temperature dependence of the thermal conductiv-
ity.—The most natural question arising from these results
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FIG. 3. Power spectra S�w� in arbitrary units of the Fourier
modes 1, 2, 4, 8, 16, 32, and 64 (curves from left to right in the
high frequency region) in a chain of length N � 1024 of rotators
with energy density with energy density 0.5. The curves result
from an average over 1000 independent initial conditions. In
the inset, the same modes are reported for a diatomic FPU chain
with masses 1, 2 and energy density 8.8.
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concerns the reason for the striking difference with other
symmetric models such as the FPU-b system. As long
as each �qi11 2 qi� remains confined to the same valley
of the potential, there cannot be any qualitative difference
with the models previously studied in the literature. Jumps
through the barrier, however, appear to act as localized ran-
dom kicks that contribute to scattering the low-frequency
modes and thus to a finite conductivity. If this intuition
is correct, one should find analogies between the tempera-
ture dependence of the conductivity and the average es-
cape time from the potential well. To this aim, we have
computed k for different temperature values by performing
microcanonical simulations with various energy densities.
From the data reported in Fig. 4, one can notice a diver-
gence for T ! 0 of the type k � exp�a�T � with a � 1.2.
An even more convincing evidence of this behavior is pro-
vided by the temperature dependence of the average escape
time (see the triangles in Fig. 4) with an exponent a � 2.
The latter behavior can be explained by assuming that the
jumps are the results of activation processes. Accord-
ingly, the probability of their occurrence is proportional
to exp�2DV�T �, where DV is the barrier height and the
Boltzmann constant is fixed equal to 1 (as implicitly done
throughout the Letter). Since DV � 2, the whole inter-
pretation is consistent. Moreover, in the absence of jumps,
the dependence of the conductivity on the length should be
the same as in FPU systems, i.e., k � N2�5. Therefore, a
low-frequency mode traveling along the chain should ex-
perience a conductivity of the order of N

2�5, where N is
the average separation between jumps. Under the assump-
tion of a uniform distribution of phase jumps, their spatial
separation is of the same order of their time separation, so
that we can expect that k � exp�2DV��5T �	. On the one
hand, this heuristic argument explains why and how such
jumps contribute to a normal transport. On the other hand,
the numerical disagreement between the observed and the
expected values of the exponent a (1.2 vs 0.8) indicates
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FIG. 4. Thermal conductivity k (labels on the left axis) versus
the inverse temperature 1�T in the rotator model (open circles).
Triangles correspond to the average time separation between
consecutive phase jumps (labels on the right axis) in the same
system.
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that our analysis needs refinements. In fact, we should,
e.g., notice that, in the low-energy limit, nonlinearities be-
come negligible, implying that deviations from the asymp-
totic law k � N2�5 should become relevant.

(E) Further checks.—In order to test the conjecture
that jumps are responsible for a normal heat transport, we
have decided to investigate some other models. First, we
have considered a double-well potential V �x� � 2x2�2 1

x4�4 (the same as in FPU with a different sign for the
harmonic term). The results of the direct simulations are
reported in Fig. 1 (see triangles) for a temperature cor-
responding again to a quarter of the barrier height. The
finiteness of the conductivity and its numerical value is
confirmed by the computation of k through the Green-
Kubo formula (see the light-grey shaded region).

Finally, we have considered an asymmetric version
of the rotator model, namely, V �x� � A 2 cos�x� 1

0.4 sin�2x�, where A is fixed in such a way that the mini-
mum of the potential energy is zero, and the temperature
again corresponds to one quarter of the barrier height. In
this case too, the conductivity is finite, confirming our
empirical idea that the jumps are responsible for breaking
the coherence of the energy flux and, in turn, for the finite
conductivity.

In conclusion, in this Letter we have reported about the
first evidence of normal heat transport in 1D systems with
momentum conservation. Such a behavior appears to be
connected with jumps between neighboring potential val-
leys. From the dynamical point of view, it is natural to ask
what are the peculiar properties of such jumps that make
them so different from other types of nonlinear fluctua-
tions that may occur in the single-well type of potentials.
The only clearly distinctive feature that we have found is
the “hyperbolic” type of behavior in the vicinity of a maxi-
mum of the potential which has to be confronted with the
typical “elliptic” character of the oscillations around the
minima. We hope to be able to understand in the future
whether this is truly the reason for the difference in FPU
and rotator systems.
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