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Spontaneous Radiation and Lamb Shift in Three-Dimensional Photonic Crystals
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Spontaneous emission in photonic crystals with anisotropic three-dimensional dispersion relation is
studied. If the upper level is below a characteristic frequency v1, or above v2, or between v1 and v2,
the radiation is a localized field with a frequency in the band gap, or a propagating field with a frquency
in the band, or a diffusion field, respectively. An analytical expression for the Lamb shift is obtained.
The Lamb shift for the current case is small compared to that in an ordinary vacuum or in one- or
two-dimensional photonic crystals due to lower density of states.

PACS numbers: 42.50.Dv, 32.80.Bx
There has been a growing interest in the study of pe-
riodic dielectric structures (photonic crystals) [1–5]. The
inhibition of light wave propagation in photonic crystals
provides a way to control spontaneous emission [4,5] that
has many important applications [4]. The previous stud-
ies show that the gap edge has novel influences on op-
tical behavior of an atom in a photonic crystal such as
the appearance of photon-atom bound states [6–8], spec-
tral splitting [9], enhanced quantum interference effects
[8], coherent control of spontaneous emission [10], non-
Markovian effects [6,11] etc. In these studies, the photonic
crystal can be well represented by one band edge frequency
vc and a dispersion relation. In many earlier studies, the
photon dispersion relation near the band edge is assumed
to be one dimensional [6–9,11]. A real photonic crys-
tal in general has an anisotropic structure in momentum
space, and a three-dimensional dispersion relation is re-
quired. The density of states (DOS) in a three-dimensional
case is proportional to �vk 2 vc�1�2 (vk is the frequency
of the kth vacuum mode). In contrast, it is proportional
to �vk 2 vc�21�2 in a one-dimensional case leading to a
singularity. This may cause discrepancies as the density
of states plays an important role in the interaction between
light and materials.

In this paper we study how the spontaneous emission be-
haves if the three-dimensional dispersion relation is taken
into account. The characteristics of the spontaneous ra-
diation is considerably different from what is obtained in
photonic crystals with one-dimensional dispersion relation.
In particular, we find that there is no coexistence of a lo-
calized field and a propagating field. We also find a strong
diffusion field that exists in the frequency domains where
we have no localized and propagating field. These novel
features are absent in crystals with isotropic dispersion re-
lations [9]. Another important question pertains to the
Lamb shift in the photonic crystals. It has been shown
that the Lamb shift of a hydrogen atom in photonic crys-
tals with one- and two-dimensional dispersion relations is
different compared with that in an ordinary vacuum [6].
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Because of an increased density of states, the Lamb shift
of a two-level atom with its transition at the band edge for a
photonic crystal with two-dimensional dispersion relation
has been shown to be much larger than that in an ordinary
vacuum [6]. This particular structure is very difficult to be
manufactured. In this paper we calculate the Lamb shift
of a two-level atom in photonic crystals with the three-
dimensional dispersion relation.

Consider spontaneous emission from a two-level atom
(ja� and jb�) in a photonic crystal. In a photonic crystal,
the vacuum dispersion relation is modified strongly by the
periodic dielectric structures and an anisotropic band-gap
structure is formed on the surface of the first Brillouin zone
in the reciprocal lattice space. In general, the band edge is
associated with a finite collection of symmetrically placed
points ki

0 leading to a three-dimensional band structure,
for example, the eight L points on the surfaces of the
first Brillouin zone of a diamond photonic crystal [1]. In
the present study, the atomic transition frequency v is
assumed to be near the band edge vc. The dispersion
relation for those wave vectors k whose directions are near
one of ki

0 can be expressed approximately by vk � vc 1

Ajk 2 ki
0j

2, where A is a model dependent constant. The
Hamiltonian of the atom and the electromagnetic modes is

H � h̄vja� �aj 1
X
k

h̄vkb
y
k bk

1 ih̄
X
k

�gkb
y
k jb� �aj 2 H.c.� . (1)

Here bk (b
y
k ) is the annihilation (creation) operator for the

kth electromagnetic mode with frequency vk , and gk �
vd1

h̄

q
h̄

2e0vkV0
ek ? ud is the coupling constant between the

kth electromagnetic mode and the atomic transition (as-
sumed real). d1 and ud are, respectively, the magnitude
and unit vector of the atomic dipole moment.

The state vector of the system is given by jc�t�� �
A�t�e2ivtja�j0�f 1

P
k Bk�t�e2ivktjb�j1k�f , with the atom

initially in the upper level. The state vector j0�f describes
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no photons existing in any modes, and j1k�f represents one
photon in the kth mode. From the Schrödinger equation,
we obtain the following equations for the amplitudes A�t�
and Bk�t�:

≠

≠t
A�t� � 2

X
k

gkBk�t�e2i�vk2v�t , (2)
≠

≠t
Bk�t� � gkA�t�ei�vk2v�t . (3)

Equations (2) and (3) can be solved by the Laplace
transform method. The resulting expression for the am-
plitude is
A�t� �
ex1t

F�x1�
1

ex2t

G�x2�
2

eidvt

p

Z `

0

b3�2i1�2px �vc 2 ix�e2xt

��dv 1 ix� �vc 2 ix� 2
p

vc b3�2�2 2 ib3x
dx , (4)
where dv � v 2 vc and b � ��vd1�2�
P

i sin2ui��8p 3

e0h̄A3�2�2�3. In deriving Eq. (4), the summation over k is
replaced by an integration over k. Because of the aniso-
tropy, the integration over k has to be carried out around
the directions of each ki

0 separately. Here ui is the angle
between the dipole vector of the atom and ki

0. The func-
tions F�x� and G�x� are defined as F�x� � 1 2 x2��2b3�2
p

2ix 2 dv � and G�x� � 1 2 ix2��2b3�2
p

ix 1 dv �.
x1 is the root of x 2 ib3�2��pvc 1

p
2ix 2 dv � � 0 in

the region [Re�x� . 0 or Im�x� . dv], and x2 is the
root of x 2 ib3�2��pvc 2 i

p
ix 1 dv � � 0 in the re-

gion [Re�x� , 0 and Im�x� , dv]. The existence of
x1 and x2 depends on the relative positions between the
atomic frequency v and the frequency of the band edge
vc. If x1 (or x2) does not exist, the first (or second) term
in Eq. (4) will be replaced by zero. There are three regions
separated by two characteristic frequencies v1 and v2
(see Fig. 1), where we have different roots. v1 � vc 1

b3�2�v
1�2
c and v2 � 2vc 2 b3�2��2v

1�2
c �3 1 �q1 2

q2�1�3 2 �q1 1 q2�1�3�, with q1 � ��4v3
c 2 20v

3�2
c b3�2��

27 1 b3�1�2 and q2 � 10v
3�2
c �27 2 b3�2. In region I

(v , v1) we have x1 only (no x2), in region II (v1 #

v # v2) we have neither x1 nor x2, and in region III
(v . v2) we have x2 only.

FIG. 1. The amplitude square (in arbitrary unit) of the local-
ized mode and the propagating mode as functions of detun-
ing of resonant frequency v from photonic band edge with
vc � 200b (the dotted curve is for the localized mode, and
the solid curve is for the propagating mode).
The radiation E�r , t� can be obtained from A�t� in a
standard way [8,12]. The three terms in Eq. (4) yield three
different emission fields. As x1 is a pure imaginary root
[8,9], the first field is a localized field near the atom. As x2
is a complex root, the second field is a propagating field,
which propagates out as a pulse with the energy velocityp

A Re�x2��Im�
p

ix2 1 dv �. The third field comes from
the integration along the cut of the single valued branches
and represents a diffusion field.

When the upper level is in region I �v , v1�, the radia-
tion is composed of a localized field and a diffusion field.
When the upper level gets into region II, the radiation con-
sists of only a diffusion field. When the upper level is in
region III, the radiation has a propagating field and a dif-
fusion field. The diffusion fields in regions I and III are
extremely small and can be neglected. However, it is very
important in region II (see Fig. 2) (several hundred times
stronger than in regions I and III) as all the energy is in
this field.

From the above discussion the following picture
emerges. The property of the radiation depends on the
relative position of the upper level to the band edge. As the
upper level moves from the gap to deep in the band, the ra-
diation changes from mainly a localized field with a well-
defined frequency less than vc to a mainly propagating
field with a frequency larger than vc. During this process,

FIG. 2. The amplitude square (in arbitrary unit) of the diffu-
sion field as a function of detuning of the resonant frequency v

from photonic band edge with vc � 200b, r
p

b�A � 1, and
bt � 3.
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the diffusion field first increases while the localized field
decreases. There is an energy transfer between the diffu-
sion field and the localized field. Then the diffusion field
decreases while the propagating field increases, i.e., the
energy in the diffusion field is transferred to the propagat-
ing field.

In region I (v , v1), the localized field can be ex-
pressed as El�r, t� � El�0�ei�vl2v�t2r�l�r . El�0� is a
2138
v dependent constant, vl � 2ix1, and the size of the
localized field is determined by the localization length,
l � ��2ix1 1 vc 2 v��A�21�2. The localization length
tends to infinity and the amplitude of the localized field
tends to zero as v goes to v1.

In region II (v1 , v , v2; see inset in Fig. 1), there
are no localized and propagating fields. The emitted field
is a typical diffusion field,
Ed�r , t� � Ed�0�
1
r

e2ivct1ir2��4At�2ip�4
Z `

0
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2xt 1 i� ye3pi�4 1 r��2
p

At ��2
, (5)
which carries all the energy. The evolution of Ed�r , t�,
with time t and the distance r from the atom, is shown
in Fig. 3. As time t increases, Ed�r , t� at any space point
increases first from zero to a maximum value, and then de-
creases to zero. Similar behavior can be seen considering
Ed�r , t� as a function of the distance r from the atom at
a given time. The position of the maximum Ed�r , t� goes
away from the atom with time (see Fig. 3). The spec-
tral width is wide due to power law decay, and the energy
diffuses out incoherently. This region is caused by the
anisotropic dispersion relation and does not exist for an
isotropic dispersion relation.

In region III, v . v2, the dominant component of
the emitted field is a propagating field. It has the form
Ep�r , t� � Ep�0�ei�vp2v�t2Gt�21iqr�r with vp � Imx2,
G � 2 Rex2, and q � ��ix2 1 v 2 vc��A�1�2. This field
propagates out coherently with all the energy (similar to
the atom being in a vacuum). The behavior of jEp�0�j2
is given in Fig. 1, indicating a pronounced switch-on ef-

FIG. 3. The evolution of the diffusion field (arbitrary unit) with
time and with the distance from the atom with vc � 200b,
v � 200.070 72b.
fect for the propagating field when the sign of v 2 v2
changes.

In the photonic crystal with the isotropic dispersion re-
lation, a localized field and a propagating field can coex-
ist [9,11]. However, this is not allowed in crystals with
an anisotropic dispersion relation. This difference comes
from the difference of DOS near the band edge in the two
cases. There is a singularity in the isotropic case but not
in the anisotropic case. In the isotropic case, any potential
from an impurity (no matter how weak) will lead to local-
ization [13] because of the singularity in DOS. This is why
we always have the localized field in the isotropic case. In
the anisotropic case there is no singularity in DOS, and the
localization needs a potential larger than a certain value
[13]. When the upper level moves up into the band from
the gap, the frequency of the localized field approaches
vc. In the isotropic case, the frequency of the localized
field cannot be vc because of the infinite DOS at vc. An
infinite DOS means infinite energy requirement for the lo-
calized field. In the anisotropic case, the frequency can be
vc because the DOS is zero at vc, and when it is vc the lo-
calized field disappears (frequency larger than vc is in the
band). At the same time the diffusion field (a field incoher-
ently diffusing out) appears, but not a coherent propagating
field because the number of electromagnetic modes near
the atomic transition frequency is still not large enough.
The further move of the upper level into the band will re-
sult in the propagating field with fixed phase. The sudden
increase of the propagating field can be used to design an
active optical microsized switch.

The Lamb shift of the atom is the difference between
the frequency of the emitted field and the upper level fre-
quency minus the contribution due to mass renormaliza-
tion. The frequencies of the emitted fields are Im�x1�
and Im�x2� for the localized and propagating fields, re-
spectively. The frequency of the diffusion field is vc [see
Eq. (5)]. The renormalization contribution is Im�x0� with
x0 being the root of F0�x� � 0, where F0�x� is the same as
F�x� with v replaced by zero [14]. Therefore we have the
Lamb shift DL � Im�x1,2� 2 Im�x0�. In Fig. 4, we plot the
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FIG. 4. The Lamb shift in unit b as a function of the detuning
of atomic frequency from the photonic band edge �v 2 vc��b.

Lamb shift as a function of the atomic transition frequency
v 2 vc for v � 100b. For v � vc, the Lamb shift can
be approximately expressed as DL � 2b�2

p
vc�b. If

we let v � 4 3 1015�s (green light) and a decay rate of
g � 108�s (b � v1�3g2�3 � 3.4 3 1010�s), the Lamb
shift is about DL�v � 0.1 3 1027, which is smaller than
that of 2S1�2 of a hydrogen atom in an ordinary vacuum.
This is because the DOS in the photonic crystals with
three-dimensional dispersion relations is much lower than
that in the ordinary vacuum. This result is also very differ-
ent from that from the one-dimensional case where DOS
has a singularity, or from the two-dimensional case where
DOS has a sudden jump [6].

In conclusion, the properties of the spontaneous radia-
tion from a two-level atom in a photonic crystal strongly
depend on the relative position of the atomic transition fre-
quency v to the band edge vc. The anisotropic dispersion
relation results in two characteristic frequencies. Below
these frequencies, the emission is mainly a localized field,
whereas, above them, the emission is mainly a coherent
pulse propagating out. For frequencies lying in between
these characteristic frequencies, the emission is a diffusion
field with all the energy diffusing out incoherently. The lo-
calized field and the propagating field cannot coexist. An
analytical expression for the Lamb shift is obtained. The
Lamb shift in anisotropic photonic crystals is less than that
in the ordinary vacuum or in crystals with one- or two-
dimensional dispersion relations because of lower density
of states.
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