
VOLUME 84, NUMBER 10 P H Y S I C A L R E V I E W L E T T E R S 6 MARCH 2000

2076
Phenomenology of a Realistic Accelerating Universe Using Only Planck-Scale Physics

Andreas Albrecht and Constantinos Skordis
Department of Physics, The University of California at Davis, One Shields Avenue, Davis, California 95616

(Received 10 August 1999)

Modern data are showing increasing evidence that the Universe is accelerating. So far, all attempts to
account for the acceleration have required some fundamental dimensionless quantities to be extremely
small. We show how a class of scalar field models (which may emerge naturally from superstring theory)
can account for acceleration which starts in the present epoch with all the potential parameters O�1� in
Planck units.

PACS numbers: 98.80.Cq, 95.35.+d
Current evidence that the Universe is accelerating [1],
if confirmed, requires dramatic changes in the field of
theoretical cosmology. Until recently, there was strong
prejudice against the idea that the Universe could be accel-
erating. There simply is no compelling theoretical frame-
work that could accommodate an accelerating universe.
Since the case for an accelerating universe continues to
build (see, for example, [2]), attempts have been made to
improve the theoretical situation, with some modest suc-
cess. Still, major open questions remain.

All attempts to account for acceleration [3–21] intro-
duce a new type of matter (the “dark energy” or “quin-
tessence”) with an equation of state pQ � wQrQ relating
pressure and energy density. Values of wQ , 20.6 today
are preferred by the data [22] and in many models wQ can
vary over time. (In this framework, wQ � 21; �wQ � 0
gives a cosmological constant.)

One challenge faced by quintessence models is similar
to the old “flatness problem” which is addressed by cos-
mic inflation. Consider Vtot � rtot�rc, where rc is the
critical density (achieved by a perfectly flat universe). The
dynamics of the standard big bang drive Vtot away from
unity and require extreme fine-tuning of initial conditions
for Vtot to be as close to unity as it is today (inflation
can set up the required initial conditions). In models with
quintessence one must consider VQ � rQ�rc which is
observed to obey

VQ � Vother � �rtot 2 rQ��rc (1)

today. The “fine-tuning” problem in quintessence models
comes from the tendency for VQ to evolve away from
Vother . Equation (1) is achieved in these models either
(i) by fine-tuning initial conditions or (ii) by introducing a
small scale into the fundamental Lagrangian which causes
rQ to only start the acceleration today. This second cate-
gory includes cosmological constant models and also a
very interesting category of “tracker” quintessence models
[10,11,18] which achieve the right behavior independently
of the initial conditions for the quintessence field. One
then has to explain the small scale in the Lagrangian, and
this may indeed be possible [23].
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Here we discuss a class of quintessence models which
behave differently. Like the tracker models, these mod-
els predict acceleration independently of the initial condi-
tions for the quintessence field. These models also have
rQ�today� fixed by parameters in the fundamental La-
grangian. The difference is that all the parameters in our
quintessence potential are O�1� in Planck units. As with
all known quintessence models, our model does not solve
the cosmological constant problem: We do not have an ex-
planation for the location of the zero point of our potential.
This fact limits the extent to which any quintessence model
can claim to “naturally” explain an accelerating universe.
Recently Steinhardt [24] has suggested that M-theory ar-
guments specify the zero point of potentials in 3 1 1 di-
mensions. Our zero point coincides with the case favored
by Steinhardt’s argument.

We start by considering a homogeneous quintessence
field f moving in a potential of the form

V �f� � e2lf. (2)

We work in units where MP � �8pG��21�2� � h̄ � c � 1.
The role of spatial variations in such a field has been stud-
ied in [5,8,12,21,31]. Inhomogeneities can be neglected for
our purpose, which is to study the large-scale evolution of
the Universe. We assume inflation or some other mecha-
nism has produced what is effectively a flat Friedmann-
Robertson-Walker universe and work entirely within that
framework. Cosmological fields with this type of exponen-
tial potential have been studied for some time and are well
understood [25–30]. (A nice review can be found in [31].)

Let us review some key features: A quintessence field
with this potential will approach a “scaling” solution, inde-
pendent of initial conditions. During scaling VQ takes on
a fixed value which depends only on l (and changes dur-
ing the radiation-matter transition). In general, if the den-
sity of the dominant matter component scales as r ~ a2n,
then after an initial transient the quintessence field obeys
Vf �

n
l2 , effectively “locking on” to the dominant matter

component. Figure 1 (upper panel) shows VQ�a� for scal-
ing solutions in exponential potential models, where a is
the scale factor of the expanding universe [a�today� � 1].
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FIG. 1. The upper panel shows VQ�a� for different constant
values of l. Each solution shows scaling behavior after the
initial transient. The radiation-matter transition is evident at a �
1025. The heavy curve saturates a generous interpretation of the
nucleosynthesis bound but still does not generate acceleration
today. The lower panel shows the evolution of f�a� for the
same solutions. Note how f varies very little while a and rQ

vary by many orders of magnitude. Today a � 1, a � 10210

at nucleosynthesis, and a � 10230 at the Planck epoch. The
curves correspond to l � 1.5, 2.5, 3.5, 4.5, and 5.5 (going from
top to bottom in the upper panel).

At the Planck epoch a � 10230. In Fig. 1 (upper panel)
one can see the initial transients which all approach the
unique scaling solution determined only by l. In [32] it
is shown that exponential potentials are the only potentials
that give this scaling behavior.

Scaling models are special because the condition VQ �
Vother is achieved naturally through the scaling behav-
ior. The problem with these exponential models is that
no choice of l can give a model that accelerates today and
is consistent with other data. The tightest constraint comes
from requiring that VQ not be too large during nucleosyn-
thesis [33] (at a � 10210). The heavy curve in Fig. 1 (up-
per panel) just saturates a generous VQ , 0.2 bound at
nucleosynthesis and produces a subdominant VQ today.
The combined effects of subdominance and scaling cause
wQ � 0 in the matter era, so this solution is irrelevant to
a universe which is accelerating today.

The lower panel of Fig. 1 shows how the value of f

changes by only about an order of magnitude over the en-
tire history of the Universe, while the scale factor (and rQ)
change by many orders of magnitude. This effect, which
is due to the exponential form of the potential, plays a key
role in what follows. The point is that modest variations
to the simple exponential form can produce much more
interesting solutions. Because f takes on values through-
out history that are O�1� in Planck units, the parameters in
the modified V �f� can also be O�1� and produce solutions
relevant to current observations.

Many theorists believe that fields with potentials of the
form

V �f� � Vp�f�e2lf (3)

are predicted in the low energy limit of M theory, where
Vp�f� is a polynomial. As a simple example we consider

Vp�f� � �f 2 B�a 1 A . (4)

For a variety of values for a, A and B solutions like the
one shown in Fig. 2 can be produced. In this solution
VQ is well below the nucleosynthesis bound, and the Uni-
verse is accelerating today. We show VQ�a� (dashed line),
Vmatter �a� (solid line), and Vradiation�a� (dotted line). The
lower panel in Fig. 2 plots wQ�a� and shows that the nec-
essary negative values are achieved at the present epoch.

Figure 3 illustrates how the solutions depend on the pa-
rameters in Vp�f�. We plot quintessence energy density
rQ as a function of the scale factor a. After showing
some initial transient behavior each solution scales with
the other matter for an extended period before rQ comes
to dominate. The radiation-matter transition, which occurs
at around a � 1025, can be seen in Fig. 3 as a change in
the slope in the scaling domain. The constant parameter

FIG. 2. Upper panel: A solution obtained by including a Vp
factor in the potential. We show VQ�a� (dashed line), Vmatter �a�
(solid line) and Vradiation�a� (dotted line). The lower panel
shows wQ�a�. The solution shows the normal radiation and
matter dominated epochs and then an accelerating quintessence
dominated epoch at the end. We have used Vp given by Eq. (4)
with B � 34.8, a � 2, A � 0.01, and l � 8. Today a � 1,
a � 10210 at nucleosynthesis, and a � 10230 at the Planck
epoch.
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FIG. 3. Energy density (rQ) vs a. The heavy line shows the
solution from Fig. 2. This set of solutions shows that the point
where acceleration (rQ � const) starts is controlled by Planck-
scale parameters in the Lagrangian. Moving from top to bottom
on the right side the values of B [in Eq. (4)] are 14, 22, 28, 34.8,
and 40. We also varied the initial value of f between 0.3 and
10 to illustrate a range of initial transients.

B in Eq. (4) has been selected from the range 14–40 for
these models, yet the point of f domination shifts clear
across the entire history of the Universe. In this picture,
the fact that VQ is just approaching unity today rather than
1010 years ago is put in by hand, as is the case with other
models of cosmic acceleration. Our models are special be-
cause this can be accomplished while keeping the parame-
ters in the potential O�1� in Planck units. Although we
illustrate only the B dependence here, we have found that
similar behavior holds when other parameters in Vp�f�
are varied.

Let us examine more closely what is going on: The
derivative of V �f� is given by

dV
df

�

µ
V 0

p

Vp
2 l

∂
V . (5)

In regions where Vp is dominated by a single power-law
fn behavior V 0

p�Vp � n�f which, unless n is large,
rapidly becomes øl for values of l large enough to evade
the nucleosynthesis bound, leading to little difference
from a simple exponential potential. However, there will
be points where Vp can show other behavior which can
impact V 0. Using Eq. (4) gives

V 0
p

Vp
�

a�f 2 B�a21

�f 2 B�a 1 A
. (6)
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FIG. 4. The upper panel shows a closeup of the interesting re-
gion of V �f� for the solution shown in Fig. 2. The dashed curve
shows a pure V �f� � exp�2lf� potential with l � 8.113 for
comparison. The onset of acceleration is caused by f settling
into the local minimum. The fact that the feature is introduced
on such a small scale is due to the exponential factor in the
potential. The lower panel shows V 0

p�Vp and l (the constant
curve). Where the two curves cross V 0 � 0.

This varies rapidly near f � B and for a � 2 peaks at a
value Vp � 1�

p
A. The upper panel in Fig. 4 shows the

behavior of V near f � B � 34.8 for the solution shown
in Fig. 2. The dashed curve shows a pure exponential for
comparison. The lower panel shows the curves V 0

p�Vp

and l (the constant curve). Where these two curves cross
V 0 � 0. Because the peak value 1�

p
A . l, two zeros are

produced in V 0 creating the bump shown in the figure. In
our solution rQ is coming to dominate near f � B be-
cause the field is getting trapped in the local minimum.
The behavior of the scaling solution ensures that f gets
stuck in the minimum rather than rolling on through (re-
gardless of the initial conditions).

At one stage in this work we focused on potentials
of the form V �f� � exp�2lefff� with the idea that leff
might not be absolutely constant, but could be slowly vary-
ing with f. We considered forms such as leff � l�1 2

�f�B�a� and found many interesting solutions, especially
for moderately large values of B which make leff slowly
varying. For example, l � 13, B � 65, and a � 1.5 give
a solution similar to Fig. 2. If this form for leff were taken
seriously for large f, then these models have an absolute
minimum in V which f settles into (or at least approached)
at the start of acceleration. But our expression may repre-
sent just an approximation to leff over the relevant (finite)
range of f values. Of course we always can rewrite Eq. (3)
in terms of leff with leff � l 2 ln�Vp��f. In the end we
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focused on potentials in the form of Eq. (3) because they
seem more likely to connect with ideas from M theory.
Whatever form one considers for V , the concept remains
the same. Simple corrections to pure V � exp�2lf� can
produce interesting solutions with all parameters O�1� in
Planck units.

We should acknowledge that we use O�1� rather loosely
here. In the face of the sort of numbers required by other
quintessence models or for, say, a straight cosmological
constant (rL � 102120), numbers like 0.01 and 34.8 are
O�1�. Also, the whole quintessence idea has several impor-
tant open questions. Some authors argue [34] that values
of f . 1 should not be considered without a full quantum
gravitational treatment, although currently most cosmolo-
gists do not worry as long as the densities are ø1 (a condi-
tion our models easily meet). Another issue that has been
emphasized by Carroll [35] is that, even with the (standard)
assumption that f is coupled to other matter only via grav-
ity, there still will be other observable consequences that
will constrain quintessence models and require small cou-
plings. Because in our models �f � 0 today the tightest
constraints in [35] are evaded, but there would still be ef-
fective dimensionless parameters �1024 required.

Looking toward the bigger picture, a general polynomial
Vp will produce other features of the sort we have noted.
Some bumps in the potential can be “rolled” over classi-
cally but may produce features in the perturbation spectrum
or other observable effects. We are investigating a variety
of cosmological scenarios with a more general version of
Vp . We are also looking at the effect of quantum decay
processes which are relevant to local minima of the sort
we consider here. We expect a range of possibilities de-
pending on the nature of Vp .

In conclusion, we have exhibited a class of quintessence
models which show realistic accelerating solutions. These
solutions are produced with parameters in the quintessence
potential which are O�1� in Planck units. Without a fun-
damental motivation for such a potential, all arguments
about “naturalness” and “fine-tuning” are not very produc-
tive. We feel, however, that this work represents interesting
progress at a phenomenological level and might point out
promising directions in which to search for a more funda-
mental picture.
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