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Bayesian Approach to Inverse Quantum Statistics
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A nonparametric Bayesian approach is developed to determine quantum potentials from empirical data
for quantum systems at finite temperature. The approach combines the likelihood model of quantum
mechanics with a priori information on potentials implemented in the form of stochastic processes.
Its specific advantages are the possibilities to deal with heterogeneous data and to express a priori
information explicitly in terms of the potential of interest. A numerical solution in maximum a posteriori
approximation is obtained for one-dimensional problems. As nonparametric estimates, the results depend
strongly on the implemented a priori information.
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The last decade has seen a rapidly growing interest in
learning from empirical data. Increasing computational
resources enabled successful applications of empirical
learning algorithms in many different areas including, for
example, time series prediction, image reconstruction,
speech recognition, and many more regression, classifica-
tion, and density estimation problems. Empirical learning,
i.e., the problem of finding underlying general laws from
observations, represents a typical inverse problem and is
usually ill-posed in the sense of Hadamard [1–3]. It is
well known that a successful solution of such problems
requires additional a priori information. In empirical
learning it is a priori information which controls the
generalization ability of a learning system by providing
the link between available empirical “training” data and
unknown outcome in future “test” situations.

The empirical learning problem we study in this Letter
is the reconstruction of potentials from measuring quantum
systems at finite temperature, i.e., the problem of inverse
quantum statistics. Two classical research fields dealing
with the determination of potentials are inverse scattering
theory [4] and inverse spectral theory [5,6]. They charac-
terize the kind of data which are necessary, in addition to
a given spectrum, to identify a potential uniquely. For ex-
ample, such data can be a second complete spectrum for
different boundary conditions, knowledge of the potential
on a half interval, or the phase shifts as a function of energy.
However, neither a complete spectrum nor specific values
of potentials or phase shifts for all energies can be deter-
mined empirically by a finite number of measurements.
Hence, any practical algorithm for reconstructing poten-
tials from data must rely on additional a priori assump-
tions, if not explicitly then implicitly. Furthermore, besides
energy, other observables like particle coordinates or mo-
menta may have been measured for a quantum system.
Therefore, the approach we study in this Letter is de-
signed to deal with arbitrary data and to treat situation spe-
cific a priori information in a flexible and explicit manner.

Many disciplines have contributed empirical learning al-
gorithms, some of the most widely spread being decision
trees, neural networks, projection pursuit techniques, vari-
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ous spline methods, regularization approaches, graphical
models, support vector machines, and, becoming espe-
cially popular recently, nonparametric Bayesian methods
[2,7–11]. Motivated by the clear and general framework it
provides, the approach we will rely on is that of Bayesian
statistics [12,13] which can easily be adapted to inverse
quantum statistics. Computationally, however, its appli-
cation to quantum systems turns out to be more demand-
ing than, for example, typical applications to regression
problems.

A Bayesian approach is based on the following two
probability densities: (1) a likelihood model p�x jO, y�,
quantifying the probability of outcome x when measuring
observable O given a (not directly observable) potential y,
and (2) a prior density p0�y� � p�y jD0� defined over a
space V of possible potentials assuming a priori informa-
tion D0. Further, let DT � �xT , OT � � ��xi , Oi� j 1 # i #

n� denote available training data and D � DT < D0 the
union of training data and a priori information. To make
predictions we aim at calculating the predictive density for
given data D

p�x jO, D� �
Z

dy p�x jO, y�p�y jD� , (1)

assuming p�x jO, y, D� � p�x jO, y�, p�y jO, D� �
p�y jD�. The posterior density p�y jD� appearing in
that formula is related to prior density and likelihood
through Bayes’ theorem p�y jD� � p�xT jOT , y�p0�y��
p0�xT jOT �, where the likelihood factorizes for inde-
pendent data p�xT jOT , y� �

Q
i p�xi jOi , y� and the

denominator is y independent. The y integral stands for
an integral over parameters if we choose a parametrized
space V , or for a function if V is an infinite dimensional
function space. Because we will in most cases not be able
to solve that integral exactly, we treat it in maximum a
posteriori approximation, i.e., in saddle point approxi-
mation if the likelihood varies slowly at the stationary
point. Then, assuming p�x jO, D� � p�x jO, y�� with
y� � arg maxy[V p�y jD�, integration is replaced by
maximization.

According to the axioms of quantum mechanics, observ-
ables O are represented by Hermitian operators and the
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probability of finding outcome x measuring observable O
is given by

p�x jO, y� � Tr�PO�x�r�y�� . (2)

Here r denotes the density operator of the quantum
mechanical system and PO�x� �

P
j jx, j	 
x, jj is the

projector on the space spanned by the orthonormalized
eigenfunctions jx, j	 of O with eigenvalue x. The label
j distinguishes eigenfunctions which are degenerate with
respect to O. If the system is not in an eigenstate of the ob-
servable O, a quantum mechanical measurement changes
the state of the system. Hence, to perform repeated mea-
surements under the same r requires the restoration of r

before each measurement.
In particular, we will consider a canonical ensemble

of quantum systems at temperature 1�b (setting Boltz-
mann’s constant to 1) characterized by the density opera-
tor r � exp�2bH���Tr exp�2bH��. Furthermore, we
assume a Hamiltonian H � T 1 V being the sum of a
kinetic energy term T for a particle with mass m and an
unknown local potential V �x, x0� � y�x�d�x 2 x0� which
we want to reconstruct from data. In case of repeated mea-
surements in a canonical ensemble one has to wait with
the next measurement until thermal equilibrium is reached
again. We will in the following focus on measurements of
particle coordinates in a single particle system in a heat
bath with temperature 1�b. In that case the xi represent
particle positions corresponding to measurements of the
observable Oi � x̂ with x̂jxi	 � xijxi	. The likelihood
becomes

p�xi j x̂, y� �
X
a

pajfa�xi�j2 � 
jf�xi�j2	 , (3)

for Hjfa	 � Eajfa	 and with 
· · ·	 denoting a thermal
expectation value with probabilities pa � exp�2bEa��Z
and Z �

P
a exp�2bEa�. One may also add a classi-

cal noise process p�xi j xi� on top of xi in which case
an additional integration is necessary to get the density
p�xi j x̂, y� �

R
dxi p�xi j xi�p�xi j x̂, y� of the noisy out-

put xi .
Already at zero temperature, even complete knowledge

of the true likelihood would just determine the modulus of
the ground state and thus not be sufficient to determine a
potential uniquely. The situation is still worse in practice,
where only a finite number of probabilistic measurements
is available, and at finite temperatures, as the likelihood
becomes uniform in the infinite temperature limit. Hence,
in addition to Eq. (2) giving the likelihood model of quan-
tum mechanics, it is essential to include a prior density
over a space of possible potentials y. To be able to formu-
late a priori information explicitly in terms of the function
values y�x� we use a stochastic process. Technically con-
venient is a Gaussian process prior density

p0�y� �

µ
det

lK0

2p

∂1�2

e2�l�2� 
y2y0jK0jy2y0	, (4)
with mean y0, representing a reference potential or tem-
plate for y, and a real symmetric, positive (semi-)definite
covariance operator �lK0�21, acting on potentials y rather
than on wave functions and measuring the distance be-
tween y and y0. Here l is technically equivalent to a
Tikhonov regularization parameter. If allowed to vary, l

is an example of a so-called hyperparameter, parametriz-
ing the prior density. Such parameters have to be included
in the integration of Eq. (1) and are often also treated in
maximum a posteriori approximation.

Typical choices for K0 implementing smoothness priors
are the negative Laplacian K0 � 2D, e.g., in one di-
mension 2D � 2d2�dx2, or a radial basis function prior
K0 � exp�2s

2
RBFD�2� [14]. Gaussian process priors can,

for example, be related to approximate symmetries. As-
sume we expect the potential to commute approximately
with a unitary symmetry operation S. Then V � SyVS �
SV defines an operator S acting on potentials V . In
that case a natural prior would be p0 ~ exp�2ES� with
ES � 
V 2 SV jV 2 SV 	�2 � 
V jK0jV 	�2 for K0 �
�I 2 S�y�I 2 S� and I denoting the identity. Note
that symmetric potentials are in the null space of such
a K0, hence another prior has to be included unless
the combination with training data does determine the
potential. Similarly, for a Lie group S�u� � exp�us� an
approximate infinitesimal symmetry is implemented by
K0 � sys. In particular, a negative Laplacian smoothness
prior enforces approximate symmetry under infinitesimal
translation. Alternatively, a more explicit prior imple-
menting an approximate symmetry can be obtained by
choosing a symmetric reference potential V0 � SyV0S
and ES � 
V 2 V0 jV 2 V0	�2.

While a Gaussian process prior is able to model only a
unimodal, concave prior density, more general prior den-
sities can be arbitrarily well approximated by mixtures of
Gaussian process priors [15]

p0�y� �
MX

k�1

p0�k�p0�y j k� , (5)

with mixture probabilities p0�k� and Gaussian prior
processes p0�y j k� having means yk and covariances
�lKk�21.

To find the potential with maximal posterior we maxi-
mize for independent data, following Bayes’ theorem,

p�y jD� ~ p0�y�
nY

i�1

p�xi jOi , y� . (6)

This is done by requiring the functional derivatives of the
log-posterior (technically often more convenient than the
posterior) with respect to y�x� to be zero,

dy�x� lnp�y jD� � 0 , (7)

where dy�x� stands for d����dy�x����. To calculate the func-
tional derivative of the likelihoods in Eq. (6) we need
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dy�x�Ea as well as dy�x�fa�x0�. These quantities can be
found by taking the functional derivative of the eigenvalue
equation of the Hamiltonian yielding, for orthonormal,
nondegenerate eigenfunctions,

dy�x�Ea � 
fajdy�x�Hjfa	 � jfa�x�j2, (8)
2070
dy�x�fa�x0� �
X

gfia

1
Ea 2 Eg

fg�x0�f�
g�x�fa�x� , (9)

using dy�x�H�x0,x00� � dy�x�V�x0, x00� � d�x 2 x0� 3

d�x0 2 x00� and taking 
fa jdy�x�fa	 � 0. Now it is
straightforward to calculate the functional derivative of
the likelihood
dy�x�p�xi j x̂, y� � 
���dy�x�f
��xi����f�xi�	 1 
f��xi�dy�x�f�xi�	 2 b�
jf�xi�j2jf�x�j2	 2 
jf�xi�j2	 
jf�x�j2	� . (10)
Finally, using

dy lnp0 � 2lK0�y 2 y0� , (11)

the functional derivative dy of the posterior can be cal-
culated. Formula (11) is also valid for Gaussian mixture
models of the form (5) provided we understand K0 �P

k p0�k jy�Kk and y0 � K21
0

P
k p0�k jy�Kkyk where

p0�k jy� � p0�y j k�p0�k��p0�y�.
It is straightforward to include also other kinds of data or

a priori information. For example, a Gaussian smoothness
prior as in Eq. (4) with zero reference potential y0 � 0 and
y�x� � 0 at the boundaries tends to lead to flat potentials
when the regularization parameter l becomes large. For
such cases it is useful to include besides smoothness also a
priori information or data which are related more directly
to the depth of the potential. One such possibility is to
include information about the average energy U � 
E	 �P

a paEa . The average energy can then be controlled
by introducing a Lagrange multiplier term m�U 2 k�, or,
technically sometimes easier, by a term representing noisy
energy data k,

pU ~ e2EU , EU �
m

2
�U 2 k�2, (12)

so that U ! k for m ! `. Using dy�x�U � 
dy�x�E	 2

b
Edy�x�E	 1 b
E	 
dy�x�E	, we find for the functional
derivative of EU

dy�x�EU � m�U 2 k� 
jf�x�j2�1 2 b�E 2 U��	 . (13)

Collecting all terms we are now able to solve the sta-
tionarity Eq. (7) by iteration. Starting with an initial guess

FIG. 1. Reconstruction of an approximately periodic poten-
tial from coordinate measurements. Shown are (a) empirical
density, i.e., relative frequencies of sampled data (bars), true
(thin line), and reconstructed likelihood (thick line); (b) ytrue
(thin line), reference potential y0 � sin�px�3� (dashed), and
reconstructed potential y (thick line). (With 200 data points,
mesh with 30 points, m � 0.25 for h̄ � 1, b � 4, K0 � 2D,
l � 0.2, m � 0, U�ytrue� � 20.354, U�y� � 20.552.)
y�0�, choosing a step width h and a positive definite matrix
A we can iterate according to

y�r11� � y�r� 1 hA21

√ X
i

dy lnp�xi j x̂, y�r��

1 K
�r�
0 �y0 2 y�r�� 2 dyE

�r�
U

!
.

(14)

Here we included an EU term which depends on y, like
K0 for mixture models, and thus changes during iteration.
Typically, h and often also A are adapted during iteration.
In the numerical examples we have studied, A � lK0
proved to be a good choice. Note that in general different
initial guesses y�0� can yield different solutions.

The numerical difficulties of the nonparametric
Bayesian approach arise from the fact that the quantum
mechanical likelihood (2) is non-Gaussian and nonlocal in
the potential y�x�. Similar to general density estimation
problems, even for Gaussian priors none of the y�x�
integrations in (1) can be carried out analytically [16].
In contrast, for example, Gaussian regression problems
have a likelihood being Gaussian and local in the function
of interest, and an analogous nonparametric Bayesian
approach with a Gaussian process prior requires one to
deal only with matrices with dimension not larger than the
number of training data [11]. The following examples will
show, however, that a direct numerical solution of Eq. (7)
by discretization is feasible for one-dimensional problems.
Higher dimensional problems, on the other hand, require

FIG. 2. Reconstruction with energy penalty term EU with k �
U�ytrue� � 20.354. Shown are true (thin lines), reconstructed
(thick lines), and reference potential (dashed). (a) K0 � 2D,
y0�x� � sin�px�3�, m � 1000, U�y� � 20.353. (b) K0 �
2D 2 gDu , y0 � 0, u � 6, g � 0.12, l � 0.05, m � 10,
U�y� � 20.351. All other parameters as for Fig. 1.
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FIG. 3. Reconstruction of symmetric potential with mixture of
Gaussian priors. (a) Shows empirical density (bars), true (thin
line) and reconstructed likelihood (thick line). (b) Shows the
true potential (thin line), the two reference potentials y1 and y2
(dashed lines), and a solution for the reconstructed potential y
(thick line). Because both reference potentials are partially sup-
ported by the data the approximated y is a mixture of the solu-
tions for y1 and y2. [Final mixture coefficients p0�1 jy� � 0.57,
p0�2 jy� � 0.43, 20 data points, mesh with 31 points, y�x� �
y�2x�, boundary condition y�615� � 0, and m � 0.1, b � 1,
K0 � 2D, l � 0.5, m � 10, k � 210, 01 � U�ytrue� result-
ing in U�y� � 210.1.]

further approximations. For example, work on inverse
many-body problems on the basis of a Hartree-Fock ap-
proximation is in progress.

In the following numerical examples we discuss
the reconstruction of an approximately periodic, one-
dimensional potential y, with the reference potential
y0 chosen periodic. The potential y may describe a
one-dimensional surface, deviating from exact periodicity
due to localized defects. To enforce the deviation from y0
to be smooth we take as prior on y a negative Laplacian
covariance, i.e., K0 � 2D. Figure 1 shows representative
numerical results for a grid with 30 points and 200 data
sampled from the likelihood p�x j x̂, ytrue� for some
chosen potential ytrue. The reconstructed potential y

has been found by iterating without energy penalty term
EU according to Eq. (14) with A � K0. We took zero
boundary conditions for y, so K0 becomes invertible, and,
consistently, periodic boundary conditions for the eigen-
functions fa . Note that the data have been sufficient to
identify clearly the deviation from the periodic reference
potential. Figure 2(a) shows the same example with an
energy penalty term EU with k � U�ytrue�. While the
reconstructed likelihood (not shown) is not much altered,
the true potential is now better approximated in regions
where it is small. As a rule, similar likelihoods do not
necessarily imply similar potentials, and vice versa.

Figure 2(b) shows the implementation of approxi-
mate periodicity by an operator Du , defined by

yjDujy	 �

R
dx jy�x� 2 y�x 1 u�j2 for periodic

boundary conditions on y, thus measuring the difference
between the potential y�x� and the potential translated
by u. To find smooth solutions we added a negative
Laplacian term with zero reference potential; i.e., we
used K0 � 2D 2 gDu . To have an invertible matrix
for periodic boundary conditions on y we iterated this
time with A � K0 1 0.1I. The implementation of
approximate periodicity by Du instead of a periodic y0 is
more general in so far as it annihilates arbitrary functions
with period u. As, however, the reference function of the
Laplacian term does not fit the true potential very well,
the reconstruction is poorer in regions where the potential
is large and thus no data are available. In these regions a
priori information is of special importance. Finally, Fig. 3
shows the implementation of a mixture of Gaussian prior
processes.

In conclusion, we have applied a nonparametric
Bayesian approach to inverse quantum statistics and
shown its numerical feasibility for one-dimensional
examples.
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