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Is Random Close Packing of Spheres Well Defined?
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Despite its long history, there are many fundamental issues concerning random packings of spheres that
remain elusive, including a precise definition of random close packing (RCP). We argue that the current
picture of RCP cannot be made mathematically precise and support this conclusion via a molecular
dynamics study of hard spheres using the Lubachevsky-Stillinger compression algorithm. We suggest
that this impasse can be broken by introducing the new concept of a maximally random jammed state,
which can be made precise.

PACS numbers: 05.20.Jj, 61.20.–p
Random packings of identical spheres have been stud-
ied by biologists, materials scientists, engineers, chemists,
and physicists to understand the structure of living cells,
liquids, granular media, glasses, and amorphous solids, to
mention but a few examples. The prevailing notion of ran-
dom close packing (RCP) is that it is the maximum den-
sity that a large, random collection of spheres can attain
and that this density is a universal quantity. This tradi-
tional view can be summarized as follows: “ball bearings
and similar objects have been shaken, settled in oil, stuck
with paint, kneaded inside rubber balloons—and all with
no better result than (a packing fraction of) . . . 0.636” [1].

One aim of this paper is to reassess this commonly held
view. First, we observe that there exists ample evidence
in the literature (in the form of actual and computer ex-
periments) to suggest strongly that the RCP state is ill
defined and, unfortunately, dependent on the protocol em-
ployed to produce the random packing as well as other
system characteristics. In a classic experiment, Scott and
Kilgour [2] obtained the RCP value fc � 0.637 by pour-
ing ball bearings into a large container, vertically vibrating
the system for sufficiently long times to achieve maximum
densification, and extrapolating the measured volume frac-
tions to eliminate finite-size effects. Important dynami-
cal parameters for this experiment include the pouring rate
and both the amplitude and frequency of vibration. The
key interactions are interparticle forces, including (ide-
ally) repulsive hard-sphere interactions, friction between
the particles (which inhibits densification), and gravity. It
is clear that the final volume fraction can depend sensi-
tively on these system characteristics. Indeed, in a re-
cent experimental study [3], it was shown that one can
achieve denser (partially crystalline) packings when the
particles are poured at low rates into horizontally shaken
containers.

Computer algorithms can be used to generate and
study idealized random packings, but the final states
are clearly protocol dependent. For example, a popular
rate-dependent densification algorithm [4] achieves fc

between 0.642 and 0.649, a Monte Carlo scheme [5] gives
fc � 0.68, and a “drop and roll” algorithm [6] yields
0031-9007�00�84(10)�2064(4)$15.00
fc � 0.60. It is noteworthy that, in contrast to the last
algorithm, the first two algorithms produce configurations
in which either the majority or all of the particles are
not in contact with one another. We are not aware of
any algorithms that truly account for friction between the
spheres.

However, we suggest that the aforementioned incon-
sistencies and deficiencies of RCP arise because it is an
ill-defined state, explaining why, to this day, there is no
theoretical determination of the RCP density. This is to
be contrasted with the rigor that has been used very re-
cently to prove that the densest possible packing fraction f

for identical spheres is p�
p

18 � 0.7405, corresponding
to the close-packed face-centered cubic (fcc) lattice or its
stacking variants [7].

The term “close packed” implies that the spheres are
in contact with one another with the highest possible co-
ordination number on average. This is consistent with the
view that RCP is the highest possible density that a random
packing of close-packed spheres can possess. However, the
terms “random” and “close packed” are at odds with one
another. Increasing the degree of coordination, and thus,
the bulk system density, comes at the expense of disorder.
The precise proportion of each of these competing effects
is arbitrary and therein lies the problem. In what follows,
we supply quantitative evidence of the ill-defined nature
of RCP via computer simulations, and we propose a new
notion, that of a maximally random jammed state.

A precise mathematical definition that supplants the
RCP state should apply to any statistically homogeneous
and isotropic system of identical spheres (with specified
interactions) in any space dimension d. Although we
discard the term “close packed,” we must retain the idea
that the particles are in contact with one another, while
maintaining the greatest generality. We say that a particle
(or a set of contacting particles) is jammed if it cannot
be translated while fixing the positions of all of the other
particles in the system. The system itself is jammed if each
particle (and each set of contacting particles) is jammed
[8]. This definition eliminates systems with “rattlers”
(freely roaming caged particles) in the infinite-volume
© 2000 The American Physical Society
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limit. We recognize that jammed structures created via
computer algorithms [9] or actual experiments will contain
a very small concentration of such rattler particles, the
precise concentration of which is protocol dependent.
Thus, in practice, one may wish to accommodate this type
of a jammed structure, although the ideal limit described
above is the precise mathematical definition of a jammed
state that we have in mind. Nevertheless, it should
be emphasized that it is the overwhelming majority of
spheres that compose the underlying “jammed” network
that confers rigidity to the particle packing.

Our definition of the maximally random jammed (MRJ)
state is based on the minimization of an order parame-
ter described below. The most challenging problem is
quantifying randomness or its antithesis: order. A many-
particle system is completely characterized statistically by
the N-body probability density function P�rN � associated
with finding the system with configuration rN . Such com-
plete information is never available and, in practice, one
must settle for reduced information. From this reduced in-
formation, one can extract a set of scalar order parameters
c1, c2, . . . , cn, such that 0 # ci # 1, ; i, where 0 cor-
responds to the absence of order (maximum disorder) and
1 corresponds to maximum order (absence of disorder).
The set of order parameters that one selects is unavoidably
subjective, given that there is no single and complete scalar
measure of order in the system.

However, within these necessary limitations, there is
a systematic way to choose the best order parameters to
be used in the objective function (the quantity to be mini-
mized). The most general objective function consists
of weighted combinations of order parameters. The set
of all jammed states will define a certain region in the
n-dimensional space of order parameters. In this region of
jammed structures, the order parameters can be divided up
into two categories: those that share a common minimum
and those that do not. The strategy is clear: retain
those order parameters that share a common minimum
and discard those that do not since they are conflicting
measures of order. Moreover, since all of the parameters
sharing a common minimum are essentially equivalent
measures of order (there exists a jammed state in which
all order parameters are minimized), choose from among
these the one that is the most sensitive measure, which we
will simply denote by c . From a practical point of view,
two order parameters that are positively correlated will
share a common minimum.

Consider all possible configurations of a d-dimensional
system of identical spheres, with specified interactions, at a
sphere volume fraction f in the infinite-volume limit. For
every f, there will be a minimum and maximum value of
the order parameter c . By varying f between zero and
its maximum value (triangular lattice for d � 2 and fcc
lattice for d � 3), the locus of such extrema define upper
and lower bounds within which all structures of identical
spheres must lie. Figure 1 shows a schematic (not quanti-
tative) plot of the order parameter versus volume fraction.
Note that at f � 0 the most disordered (c � 0) configu-
rations of sphere centers can be realized. As the packing
fraction is increased, the hard-core interaction prevents ac-
cess to the most random configurations of sphere centers
(gray region). Thus the lower boundary of c , representing
the most disordered configurations, increases monotoni-
cally with f. The upper boundary of c corresponds to the
most ordered structures at each f, e.g., perfect open lat-
tice structures (c � 1). Of course, the details of the lower
boundary will depend on the particular choice of c . Nev-
ertheless, the salient features of this plot are as follows:
(i) all sphere structures must lie within the bounds and
(ii) the jammed structures are a special subset of the al-
lowable structures [10]. We define the MRJ state to be the
one that minimizes c among all statistically homogeneous
and isotropic jammed structures.

To support the aforementioned arguments, we have car-
ried out molecular dynamics simulations using systems of
500 identical hard spheres with periodic boundary con-
ditions. Starting from an equilibrium liquid configura-
tion at a volume fraction of f � 0.3, we compressed the
system to a jammed state by the well-known method of
Lubachevsky and Stillinger [9] which allows the diame-
ter of the particles to grow linearly in time with a dimen-
sionless rate G. Figure 2a shows that the volume fraction
of the final jammed states is inversely proportional to the
compression rate G. A linear extrapolation of the data to
the infinite compression rate limit yields f � 0.64, which

FIG. 1. A schematic plot of the order parameter c versus
volume fraction f for a system of identical spheres with pre-
scribed interactions. All structures at a given value of f must
lie between the upper and lower bounds (white region); gray
region is inaccessible. The boundary containing the subset of
jammed structures is shown. The jammed structures are shown
to be one connected set, although, in general, they may exist
as multiply disconnected. Point A represents the jammed struc-
ture with the lowest density and point B represents the densest
ordered jammed structure (e.g., close-packed fcc or hexagonal
lattice for d � 3, depending on the choice for c). The jammed
structure which minimizes the order parameter c is the maxi-
mally random jammed state.
2065



VOLUME 84, NUMBER 10 P H Y S I C A L R E V I E W L E T T E R S 6 MARCH 2000
0.64 0.65 0.66 0.67 0.68
φ

0.0

0.5

1.0

1.5

2.0

(Γ
 x

 1
03 )−1

 

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Q

0.0

0.2

0.4

0.6

0.8

1.0

T

increasing φ

jammed

liquid

crystal

structures

(b)

FIG. 2. Molecular dynamics simulation results for the hard-
sphere system. (a) The reciprocal compression rate G21 ver-
sus the volume fraction f of the final jammed state of hard
spheres using the molecular dynamics compression protocol of
Lubachevsky and Stillinger [9]. The jammed state occurs when
the diameters can no longer increase in time, the sphere colli-
sion rate diverges, and no further compression can be achieved
after relaxing the configuration at the jammed volume fraction.
Each point represents the average of 27 compressions, and the
dashed line is a linear fit to the data, which yields f � 0.64
when G21 � 0. (b) The Q-T plane for the hard-sphere system,
where T and Q are translational and orientational order parame-
ters, respectively. Shown are the average values for the jammed
states of (a) (circles), as well as states along the equilibrium liq-
uid (dotted line) and crystal (dashed line) branches.

is close to the supposed RCP value reported by Scott and
Kilgour.

To quantify the order (disorder) in our jammed struc-
tures, we have chosen to examine two important measures
of order: bond-orientational order and translational order
[11]. The first is obtainable in part from the parameter Q6
and the second is obtainable in part from the radial distri-
bution function g�r� (e.g., from a scattering experiment).
To each nearest-neighbor bond emanating from a sphere,
one can associate the spherical harmonics Ylm�u, w�, using
the bond angles as arguments. Then Q6 is defined by [12]

Q6 �

√
4p

13

6X
jY6mj

2

!1�2

, (1)

m�26
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where Y6m denotes an average over all bonds. For a com-
pletely disordered system in the infinite-volume limit, Q6
equals zero, whereas Q6 attains its maximum value for
space-filling structures (Qfcc

6 � 0.575) in the perfect fcc
crystal. Thus, Q6 provides a measure of fcc crystallite for-
mation in the system. For convenience we normalize the
orientational order parameter Q � Q6�Qfcc

6 by its value
in the perfect fcc crystal.

Scalar measures of translational order have not been well
studied. For our purposes, we introduce a translational or-
der parameter T which measures the degree of spatial or-
dering, relative to the perfect fcc lattice at the same volume
fraction. Specifically,

T �

É PNC

i�1�ni 2 nideal
i �PNC

i�1�nfcc
i 2 nideal

i �

É
, (2)

where ni (for the system of interest) indicates the average
occupation number for the shell of width ad centered at a
distance from a reference sphere that equals the ith nearest-
neighbor separation for the open fcc lattice at that den-
sity, a is the first nearest-neighbor distance for that fcc
lattice, and NC is the total number of shells (here we
choose d � 0.196 and NC � 7). Similarly, nideal

i and nfcc
i

are the corresponding shell occupation numbers for an
ideal gas (spatially uncorrelated spheres) and the open
fcc crystal lattice. Observe that T � 0 for an ideal gas
(perfect randomness) and T � 1 for perfect fcc spatial
ordering.

The relationship between translational and bond-
orientational ordering has heretofore not been character-
ized. We have measured both T and Q for the jammed
structures generated by the Lubachevsky-Stillinger algo-
rithm and have plotted the results in the Q-T plane in
Fig. 2b [13]. This order plot reveals several key points.
First, we observe that T and Q are positively correlated
and therefore are essentially equivalent measures of
order for the jammed structures. Therefore, in seeking
to determine the MRJ state using T and Q, one would
search for jammed structures that minimize Q, the more
sensitive of the two measures. Our preliminary results
indicate that the MRJ packing fraction fMRJ � 0.64 for
500 spheres using the Lubachevsky-Stillinger protocol. It
should be noted, however, that a systematic study of other
protocols may indeed find jammed states with a lower
degree of order as measured by Q. Moreover, we notice
that the degree of order increases monotonically with the
jammed packing fraction [11]. These results demonstrate
that the notion of RCP as the highest possible density that
a random sphere packing can attain is ill defined since one
can achieve packings with arbitrarily small increases in
volume fraction at the expense of small increases in order.

For purposes of comparison, we have included in the or-
der plot of Fig. 2b results for the equilibrium hard-sphere
system for densities along the liquid branch and densi-
ties along the crystal branch, ending at the maximum
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close-packed fcc state [14]. Interestingly, the equilibrium
structures exhibit the same monotonicity properties as the
jammed structures, i.e., T increases with increasing Q and
the degree of order increases with the packing fraction.
Note that neither Q nor T are equal to unity along the
equilibrium crystal branch because of thermal motion.

To summarize, we have shown that the notion of RCP
is not well defined mathematically. To replace this idea,
we have introduced a new concept: the maximally ran-
dom jammed state, which can be defined precisely once
an order parameter c is chosen. This lays the mathemati-
cal groundwork for studying randomness in dense pack-
ings of spheres and initiates the search for the MRJ state
in a quantitative way not possible before. Nevertheless,
significant challenges remain. First, new and efficient pro-
tocols (both experimental and computational) that generate
jammed states must be developed. Second, since the char-
acterization of randomness is in its infancy, the systematic
investigation of better order parameters is crucial.
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