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Wave Packet Dynamics in Energy Space, Random Matrix Theory,
and the Quantum-Classical Correspondence
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We apply random-matrix-theory (RMT) to the analysis of evolution of wave packets in energy space.
We study the crossover from ballistic behavior to saturation, the possibility of having an intermediate
diffusive behavior, and the feasibility of strong localization effect. Both theoretical considerations and
numerical results are presented. Using quantal-classical correspondence considerations we question the
validity of the emerging dynamical picture. In particular, we claim that the appearance of the intermediate
diffusive behavior is possibly an artifact of the RMT strategy.
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We are interested in the dynamics that is generated by
a Hamiltonian of the type H � E 1 W , where E is a
diagonal matrix whose elements are the ordered energies
�En�, with mean level spacing D, and W is a banded ma-
trix. It is assumed that W is similar to a banded ran-
dom matrix (BRM), with nonvanishing couplings within
the band 0 , jn 2 mj # b. These coupling elements are
zero on the average, and they are characterized by the vari-
ance s � ��jWnmj

2��1�2. Thus, there are four parameters
�D, b, s, h̄� that control the dynamics. One important ap-
plication of BRM is in solid-state physics for the study of
localization in quasi-one-dimensional disordered systems.
In this frame nonzero values of D reflect the presence of a
constant electric field along the sample. However, in this
Letter we mainly have in mind the original motivation fol-
lowing Wigner [1]. Namely, the study of either chaotic or
complex conservative quantum systems that are encoun-
tered in nuclear physics as well as in atomic and molecu-
lar physics. For this reason, the above defined model (with
nonzero D) is known in the literature [2–4] as Wigner’s
BRM (WBRM) model.

Consider a system whose total Hamiltonian is H �Q, P�,
where �Q, P� is a set of canonical coordinates. We assume
that the preparation and the representation of the system are
determined by a Hamiltonian H0�Q, P�. We also assume
that both H0�Q, P� and H �Q, P� generate classically
chaotic dynamics of similar nature. [Physically, going
from H0 to H may signify a change of an external
field, or switching on a perturbation, or sudden change
of effective interaction (as in molecular dynamics).] We
choose a basis such that the quantized Hamiltonian ma-
trix H0 has a diagonal structure H0 � E. According to
general semiclassical arguments [2], the quantized Hamil-
tonian matrix H , in the same basis, has a band structure
H � E 1 W . The WBRM model can be regarded as
a simplified local description of the true Hamiltonian ma-
trix. However, there is one feature that distinguishes the
effective WBRM model from the true Hamiltonian. It is
the assumption that the off-diagonal elements are uncor-
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related as if they were independent random numbers. In
this Letter, we would like to explore the consequences of
this RMT assumption on the dynamics. Below, we de-
fine the classical limit of the WBRM model, and the vari-
ous parametric regimes in the quantum-mechanical theory.
We analyze the dynamical scenario in each regime, and we
explain that the emerging picture is incompatible with the
quantal-classical correspondence (QCC) principle.

Taking H �Q, P� to be a generator for the (classical)
dynamics, the energy H0�t� � H0���Q�t�, P�t���� fluctuates.
The fluctuations are characterized by a correlation time tcl,
and by an amplitude dEcl. The three parameters �D, b, s�
that define the effective WBRM model are determined
by semiclassical considerations [2]. One obtains D ~ h̄d ,
b ~ h̄2�d21�, and s ~ h̄�d21��2, where d is the number
of degrees of freedom (dimensionality) of the system. In
this Letter, we find it convenient to define the two classi-
cal quantities (tcl, dEcl) in terms of the common quantum-
mechanical parameters:

tcl � h̄��bD�, dEcl � 2
p

b s . (1)

[The numerical prefactors are chosen such that whenever
(4) applies, we have tbal � tcl and dE�`� � dEcl.] The
classical dynamical scenario is formulated by using a
phase-space picture [5]. The initial preparation is assumed
to be a microcanonical distribution that is supported by
one of the energy surfaces of H0�Q, P�. For t . 0, the
phase-space distribution spreads away from the initial
surface. “Points” of the evolving distribution move upon
the energy surfaces of H �Q, P�. We are interested in the
distribution of the energies H0�t� of the evolving points.
It is easily argued that for short times this distribution
evolves in a ballistic fashion. Then, for t ¿ tcl, due to
ergodicity, a steady-state distribution appears, where the
evolving points occupy an “energy shell” in phase space.
The thickness of this energy shell [4] equals dEcl. Thus
we have a crossover from ballistic energy spreading to
saturation. The dynamics in the classical limit is fully
characterized by the two classical parameters tcl and dEcl.
© 2000 The American Physical Society
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We are going to study the corresponding quantum-
mechanical scenario. At t � 0 the system is prepared in
an eigenstate of H0 � E. For t . 0 the evolution of the
system is determined by H � E 1 W . The evolving
state is c�t�, and we are interested in the evolving
distribution j�njc�t��j2. We shall use the following termi-
nology: The standard perturbative regime is �s�D� , 1.
The Wigner regime is 1 ø �s�D� ø b1�2. The ergodic
regime is b1�2 ø �s�D� ø b3�2. The localization
regime is b3�2 ø �s�D�; see [1,4]. It is easily verified
that the limit h̄ ! 0 corresponds to the ergodic regime or
possibly (provided d � 2) to the localization regime.

The structure of the eigenstates a of H has been stud-
ied in [1,3,4]. We denote the average shape of an eigenstate
as WE�r� � �jwa�na 1 r�j2� where wa�n� � �nja�, and
na is the “site” around which the eigenstate is located. The
average is taken over all the eigenstates that have roughly
the same energy Ea � E. There are two important energy
scales: one is the classical width of the energy shell dEcl,
and the other is the range of the interaction Db � bD. In
the standard perturbative regime WE�r� contains mainly
one level, and there are perturbative tails that extend over
the range Db . In the Wigner regime, many levels are mixed:
the main (nonperturbative) component of WE�r� has width
G � 2p�s�D�2 3 D, and the shape within the bandwidth
Db is of the Lorentzian type. However, in actual physical
applications this Lorentzian is a special case of core-tail
structure [5], where the tail can be found via first-order
perturbation theory. Outside the bandwidth the tails decay
faster than exponentially [3]. On approach to the ergodic
regime WE�r� spills over the range Db . Deep in the er-
godic regime it occupies “ergodically” the whole energy
shell whose width is dEcl. In actual physical applications
the exact shape is determined by simple classical consid-
erations [5,6]. Deep in the localization regime WE�r� is no
longer ergodic: A typical eigenstate is exponentially local-
ized within an energy range dEj � jD much smaller than
dEcl. The localization length is j 	 b2. In actual physi-
cal applications it is not clear whether there is such a type
of localization. (We are using the term “localization” only
in the sense of having dEj ø dEcl.)

Now we would like to explore the various dynamical
scenarios that can be generated by the Schrödinger
equation for an�t� � �njc�t��. Namely, dan�dt �
2�i�h̄�Enan 2 �i�h̄�

P
m Wnmam, starting with an initial

preparation an � dnm at t � 0. In a previous study [7]
only the localization regime was analyzed. Here we con-
sider the general case (D fi 0). We describe the energy
spreading profile for t . 0 by the transition probability
kernel Pt�njm� � �jan�t�j2�. The angular brackets stand
for averaging over realizations of the Hamiltonian. It is
convenient to characterize the energy spreading profile by
the variance M�t� �

P
n�n 2 m�2Pt�njm�, the participa-

tion ratio N�t� � �
P

n
Pt�njm��2�21, the total transition
probability p�t�, and the out-of-band transition probability
q�t�. Both p�t� and q�t� are defined as

P0
n P�njm� where

the prime indicates exclusions of the term n � m or
exclusion of the terms jn 2 mj # b, respectively. The
Schrödinger equation has been integrated numerically
using the self-expanding algorithm of [7] to eliminate
finite-size effects. Namely, additional 10b sites are added
to each edge whenever the probability of finding the
“particle” at the edge sites exceeded 10215. Figure 1
illustrates the time evolution of the energy spreading pro-
file. From such plots we define various time scales. The
times tball and tsat pertain to M�t� and mark the departure
time from ballistic behavior and the crossover time to
saturation. The time tsta pertains to N�t� and marks the
crossover to a stationary distribution. The time scale tprt
pertains to p�t� and marks the disappearance of the simple
perturbative structure [see (2) below]. The asymptotic
value of q�t�, if it is much less than 1, indicates that the
system is either in the standard perturbative regime or in
the Wigner regime, where out-of-band transitions can be
neglected. The saturation profile is given by the expres-
sion P`�njm� �

P
a j�nja�j2j�ajm�j2, and it is roughly

approximated by the autoconvolution of WE�r�. Therefore
the saturation profiles (Fig. 1) are similar to the average
shape of the eigenstates. We have found that M�`�
satisfies a scaling relation Y � 2X
1 2 exp�21�2X��
where X � �s�D��b3�2 and Y � 
M�`��1�2�b2. This
scaling relation is similar to the one that pertains to the
average shape of the eigenstates [4].

In the standard perturbative regime each eigenstate of
H is localized “perturbatively” in one energy level. Thus,
for arbitrarily long times the probability is concentrated
mainly in the initial level. We can write schematically [5]

Pt�njm� 	 dnm 1 Tail�n 2 m; t� , (2)

where Tail�n 2 m; t� � �s�h̄�2tF̃t
�En 2 Em��h̄� within
the range of first-order transitions (0 , jn 2 mj , b),
and zero otherwise. Here F̃t�v� � t
sinc�vt�2��2 is the
spectral content of a constant perturbation of duration t,
and sinc�x� � sin�x��x. We have trivial recurrences from
n to m once t becomes larger than 2p h̄��En 2 Em�. The
global crossover to quasiperiodic behavior is marked by
the Heisenberg time tH � 2p h̄�D. The total normaliza-
tion of the tail is much less than unity at any time.

In the Wigner regime, one observes that the perturbative
expression (2) is still valid for sufficiently short times
t ø tprt. Let us estimate the perturbative break time
tprt. For short times (t , tcl) the spectral function F̃t�v�
is very wide compared with the bandwidth Db of first-
order transitions. Consequently, we can use the replace-
ment F̃t�v� � t and we get that the total transition
probability is p�t� 	 b 3 �st�h̄�2. On the other hand,
for t . tcl, the spectral function F̃t�v� is narrow com-
pared with the bandwidth, and it can be approximated by
a delta function. As a result we get p�t� 	 s2��h̄D� 3 t.
The condition p�t� � 1 determines tprt leading to

tprt �

Ω
h̄D�s2 for 1 , s�D ,

p
b ,

h̄��
p

b s� for
p

b , s�D .
(3)
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FIG. 1. Left: Representative examples of time evolution. The units of energy and time are chosen such that s � 1 and h̄ �
1. Here b � 80. Right: Saturation profiles for the following regimes: (a) standard perturbative, (b) Wigner, (c) ergodic,
(d) localization. The distance between the tick marks on the horizontal axis of (a)–(c) is b. In (d) the full scale is jn 2 mj , 2000.
The full scale of the vertical log axis is 215 , ln�P� , 0. In (a) and (b) the 1��n 2 m�2 behavior of the (in-band) tail is fitted by
dashed lines. The in-band profile in (b) corresponds to a Lorentzian with a very high accuracy.
It should be noticed that for s � D we get tprt � tH.
Thus, taking recurrences into account, we come again to
the conclusion, that for s ø D there is no perturbative
break time. The variance 
dE�t��2 � D2 3 M�t� of the
energy distribution (2) is easily calculated. We get a bal-
listiclike behavior, followed by saturation,

dE�t� 	
Ω

�dEcl�tcl� for t , tcl ,
dEcl for t . tcl .

(4)

For t � tprt the tail (2) becomes Lorentzian-like, and it is
characterized by a width h̄�t � G. For t . tprt expres-
sion (2) loses its validity, but it is obvious that the energy
cannot spread any more, since it had already acquired the
saturation profile.

It should be realized that neither (2), nor the Lorentzian-
like saturation profile of the Wigner regime, could cor-
respond to the classical spreading profile. In the latter
case the saturation profile is characterized by two genuine
quantum mechanical scales (G, Db), whereas the classical
ergodic distribution is characterized by the single energy
scale dEcl; see Fig. 2. However, in spite of this lack of cor-
respondence, the variance (4) behaves in a classical-like
fashion. Using the terminology of [5] we have here re-
stricted rather than detailed QCC: The quantal Pt�njm� is
definitely different from its classical analog, but the vari-
ance dE�t�, unlike the higher moments of the distribution,
turns out to be the same.

In the ergodic regime the time scale tcl becomes larger
than tprt, and therefore tcl loses its significance. At t �
tprt the quantal energy spreading just “fills” the energy
range Db , and we get dE�t� 	 Db . The perturbative result
(2) is no longer applicable for t . tprt. However, the
simplest heuristic picture turns out to be correct. Namely,
once the mechanism for ballisticlike spreading disappears
a stochasticlike behavior takes its place. The stochastic
energy spreading is similar to a random-walk process with
step size Db and transient time tprt. Therefore we have a
diffusive behavior dE�t�2 � DEt where

DE � CD2
b�tprt � CD2b5�2s�h̄ ~ h̄ (5)
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and the numerical prefactor [7] is C 	 0.85. This diffusion
is not of a classical nature. The diffusion can go on as long
as �DEt�1�2 , dEcl, hence the ergodic time is

terg � b23�2h̄s�D2 ~ 1�h̄ . (6)

After this ergodic time the energy spreading profile satu-
rates to a classical-like steady state distribution [4].

In the localization regime the quasiperiodic nature
of the dynamics is important. The “operative” eigen-
states are defined as those having a non-negligible
overlap with the initial state m. These eigenstates
are located within the energy shell whose width is dEcl. If
the eigenstates are ergodic, then all of them are operative,
and therefore the effective level spacing between them
is Deff 	 D. However, if the eigenstates are localized,
then only j out of them have a significant overlap with
the initial state m, and therefore Deff 	 dEcl�j. The
effective energy spacing Deff is the relevant energy
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FIG. 2. The uppper diagram illustrates the various dynami-
cal scenarios (see text). The lower plot illustrates the various
energy-scales that characterize the associated stationary distri-
butions: The bandwidth Db is indicated by a horizontal solid
line; the width of the nonperturbative component is indicated by
the grey shading. The width of the energy shell is indicated by
the dashed line. The variance dE�`� is indicated by the bold
solid line.
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scale for determination of the crossover to quasiperiodic
behavior. The associated time scale is t� � 2p h̄�Deff,
and it may be either less than or equal to the Heisenberg
time tH � 2p h̄�D. The localization regime is defined by
the condition t� , terg. Hence the diffusion stops before
an ergodic distribution arises, and we get DEt� 	 dE2

j .
Inserting the definition of t� and solving for j we obtain
the well-known [2,4] estimate j 	 b2. For the break time
we obtain

t� � b3�2h̄�s ~ �1�h̄�2d23. (7)

Note that the localization range is dEj � jD ~ �1�h̄�d22.
If the diffusion were of a classical nature, we would get
dEj ~ �1�h̄�d21 as in the semiclassical analysis of [8].

The various dynamical scenarios discussed above are
summarized by the diagram of Fig. 2, and can be compared
with the data presented in Fig. 3. As expected from the
theoretical considerations we have in the Wigner regime
tball 	 tsat 	 tcl and tsta 	 tprt. In the ergodic regime we
have as expected tball 	 tprt ø tcl, while tsat 	 tsta �
terg. Thus, in the ergodic regime we have a premature
departure of the ballistic behavior, and the appearance of
an intermediate diffusive stage.

Our major motivation for studying WBRM model comes
from “quantum chaos” (see introduction). Namely, the
WBRM model can be regarded as an effective model
for the analysis of the dynamics of a quantized classi-
cally chaotic system. The condition to be in the regime
�s�D� ø b1�2 can be cast into the form h̄ ¿ Cprt, where
Cprt � dEcltcl is a classical scale. In this regime the
perturbative result Eq. (4) is valid. The derivation of (4)

0

−1
 t_ball
 t_sat
 t_prt
 t_sta

1/2 3/2
0

1

2

M(∞)
N(∞)

Ergodic (a)

(b)

FIG. 3. (a) The times tball, tsat, tsta, and tprt are numerically de-
termined. Different values of b are distinguished by the relative
size of the symbols. The axes are X � log�s�D�� log�b�, and
Y � log�t�tH�� log�2pb�. Note that Y � 21 implies t � tcl,
and Y � 0 implies t � tH. In the ergodic regime tsat departs
from tbal and an intermediate diffusive stage appears. The satu-
ration time approaches tH but eventually drops down once we
enter into the localization regime. (b) Both log
M�`��� log�b�
and log
N�`��� log�b� are plotted versus log�s�D�� log�b�. The
arrow indicates a global horizontal shift of the N�`� plot for
presentation purpose.
is not sensitive to the presence or the absence of subtle cor-
relations between matrix elements. Therefore (4) is valid
in case of the quantized Hamiltonian, as well as in case
of the effective WBRM model. Hence we may say that
the applicability of an effective RMT approach is trivial in
the regime h̄ ¿ Cprt. In contrast to that, in the nonper-
turbative regime (h̄ ø Cprt), correlations between matrix
elements become important, and it may have implications
on the dynamical behavior. Whether an effective RMT
approach is valid becomes a nontrivial question in the non-
perturbative regime.

In the regime h̄ ¿ Cprt we have restricted QCC [5]. It
means that QCC holds only for the variance dE�t�. Fixing
all the classical parameters, including the time t which is
assumed to be of the order of tcl, we can always define
a sufficient condition h̄ ø CSC for having detailed QCC
[5]. Detailed QCC means that the quantal energy spread-
ing profile Pt�njm� can be approximated by a classical
calculation. The considerations that lead to the determi-
nation of the classical scale CSC are discussed in [5]. We
cannot give an explicit expression for CSC because it is a
nonuniversal (system-specific) parameter. Detailed QCC
implies that Eq. (4) should hold again once the condition
h̄ ø CSC is satisfied.

For the WBRM model we have found that for h̄ ø Cprt
there is a premature departure from ballistic behavior, fol-
lowed by an intermediate diffusive behavior. So we have
a contradiction here between RMT considerations on one
hand, and QCC considerations on the other. Thus, if the
RMT approach is nontrivially valid, then it is only in a
restricted range CSC ø h̄ ø Cprt. Outside this regime it
is either trivially valid (h̄ ¿ Cprt) and we have restricted
QCC, or else it is not valid at all (h̄ ø CSC) and instead
we have detailed QCC. It may be true that in many cases
the RMT considerations are not valid for the purpose of
analyzing time-dependent dynamical scenarios. A simi-
lar observation applies to the theory of a quantum dissi-
pation [5].
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