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We apply random-matrix-theory (RMT) to the analysis of evolution of wave packets in energy space.
We study the crossover from ballistic behavior to saturation, the possibility of having an intermediate
diffusive behavior, and the feasibility of strong localization effect. Both theoretical considerations and
numerical results are presented. Using quantal-classical correspondence considerations we question the
validity of the emerging dynamical picture. In particular, we claim that the appearance of the intermediate
diffusive behavior is possibly an artifact of the RMT strategy.
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We are interested in the dynamics that is generated by
a Hamiltonian of the type H{ = E + W, where E is a
diagonal matrix whose elements are the ordered energies
{E,}, with mean level spacing A, and W is a banded ma-
trix. It is assumed that W is similar to a banded ran-
dom matrix (BRM), with nonvanishing couplings within
theband 0 < |n — m| = b. These coupling elements are
zero on the average, and they are characterized by the vari-
ance o = (({W,.|?)"/2. Thus, there are four parameters
(A, b, o, k) that control the dynamics. One important ap-
plication of BRM isin solid-state physics for the study of
localization in quasi-one-dimensional disordered systems.
In this frame nonzero values of A reflect the presence of a
constant electric field along the sample. However, in this
Letter we mainly have in mind the original motivation fol-
lowing Wigner [1]. Namely, the study of either chaotic or
complex conservative quantum systems that are encoun-
tered in nuclear physics as well as in atomic and molecu-
lar physics. For this reason, the above defined model (with
nonzero A) is known in the literature [2—4] as Wigher's
BRM (WBRM) model.

Consider asystem whosetotal Hamiltonianis H (Q, P),
where (Q, P) isaset of canonical coordinates. We assume
that the preparation and the representation of the system are
determined by a Hamiltonian H,(Q, P). We also assume
that both Hy(Q,P) and H (Q,P) generate classically
chaotic dynamics of similar nature. [Physically, going
from H, to H may signify a change of an external
field, or switching on a perturbation, or sudden change
of effective interaction (as in molecular dynamics).] We
choose a basis such that the quantized Hamiltonian ma-
trix H, has a diagonal structure H, = E. According to
general semiclassical arguments [2], the quantized Hamil-
tonian matrix 7, in the same basis, has a band structure
H =E + W. The WBRM model can be regarded as
asimplified local description of the true Hamiltonian ma-
trix. However, there is one feature that distinguishes the
effective WBRM modd from the true Hamiltonian. It is
the assumption that the off-diagonal elements are uncor-
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related as if they were independent random numbers. In
this Letter, we would like to explore the consequences of
this RMT assumption on the dynamics. Below, we de-
fine the classical limit of the WBRM model, and the vari-
ous parametric regimes in the quantum-mechanical theory.
We analyze the dynamical scenario in each regime, and we
explain that the emerging picture is incompatible with the
guantal-classical correspondence (QCC) principle.

Taking H (Q, P) to be a generator for the (classical)
dynamics, the energy Ho(r) = Ho(Q(), P(1)) fluctuates.
Thefluctuations are characterized by acorrelation time 7,
and by an amplitude S E.;. The three parameters (A, b, o)
that define the effective WBRM model are determined
by semiclassical considerations [2]. One obtains A =« ¢,
b o i~ and o o« F4~D/2 where d is the number
of degrees of freedom (dimensionality) of the system. In
this Letter, we find it convenient to define the two classi-
cal quantities (71, 6 E1) in terms of the common quantum-
mechanical parameters:

Ta = li/(bA), 8Eq =2\bo. Q)

[The numerical prefactors are chosen such that whenever
(4) applies, we have ry,) = 7¢ and SE(«) = SE..] The
classical dynamical scenario is formulated by using a
phase-space picture [5]. Theinitial preparation is assumed
to be a microcanonical distribution that is supported by
one of the energy surfaces of H,(Q, P). For t > 0, the
phase-space distribution spreads away from the initia
surface. “Points’ of the evolving distribution move upon
the energy surfaces of 7 (Q, P). We are interested in the
distribution of the energies H,(¢) of the evolving points.
It is easily argued that for short times this distribution
evolves in a ballistic fashion. Then, for ¢ > 7, due to
ergodicity, a steady-state distribution appears, where the
evolving points occupy an “energy shell” in phase space.
The thickness of this energy shell [4] equals 6 E. Thus
we have a crossover from ballistic energy spreading to
saturation. The dynamics in the classical limit is fully
characterized by the two classical parameters 7.; and 6 E..;.
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We are going to study the corresponding quantum-
mechanical scenario. At 1 = 0 the system is prepared in
an eigenstate of H, = E. For t > 0 the evolution of the
system is determined by H{ = E + W. The evolving
state is (r), and we are interested in the evolving
distribution [(n|¢(¢))|>. We shall use the following termi-
nology: The standard perturbative regime is (o/A) < 1.
The Wigner regimeis 1 < (o/A) < b'/2. The ergodic
regime is b'? <« (0/A) < b*2.  The locdization
regime is b3/2 < (o/A); see [1,4]. It is easily verified
that the limit # — O corresponds to the ergodic regime or
possibly (provided d = 2) to the localization regime.

The structure of the eigenstates & of J{ has been stud-
iedin[1,3,4]. We denotethe average shape of an eigenstate
as Wg(r) = (lpa(na + r)I?) where ¢4 (n) = (nla), and
n, isthe“site” around which the eigenstate islocated. The
average is taken over al the eigenstates that have roughly
the sameenergy E, ~ E. There are two important energy
scales. oneis the classical width of the energy shell 6E.,
and the other is the range of the interaction A, = bA. In
the standard perturbative regime Wg(r) contains mainly
one level, and there are perturbative tails that extend over
therange A,. Inthe Wigner regime, many levelsare mixed:
the main (nonperturbative) component of Wg(r) has width
I' = 2@ (o /A)? X A, and the shape within the bandwidth
A, is of the Lorentzian type. However, in actual physica
applications this Lorentzian is a specia case of core-tail
structure [5], where the tail can be found via first-order
perturbation theory. Outside the bandwidth the tails decay
faster than exponentially [3]. On approach to the ergodic
regime Wg(r) spills over the range A,. Deep in the er-
godic regime it occupies “ergodically” the whole energy
shell whose width is § E;. In actual physical applications
the exact shape is determined by simple classical consid-
erations [5,6]. Deep in the localization regime Wg(r) isno
longer ergodic: A typical eigenstateis exponentially local-
ized within an energy range 6 E; = ¢ A much smaller than
SE. . The localization length is ¢ =~ b%. In actual physi-
cal applicationsit is not clear whether there is such atype
of localization. (We are using the term “localization” only
in the sense of having 6E; < 6E,.)

Now we would like to explore the various dynamical
scenarios that can be generated by the Schrddinger
equation for a,(t) = (n|y(r)). Namely, da,/dt =
—(i/R)E,a, — (i/R)D.,, Wana,, starting with an initial
preparation a, = 6,,, & t = 0. In a previous study [7]
only the localization regime was analyzed. Here we con-
sider the general case (A # 0). We describe the energy
spreading profile for ¢+ > 0 by the transition probability
kernel P,(n|m) = {|a,(¢)|*). The angular brackets stand
for averaging over realizations of the Hamiltonian. It is
convenient to characterize the energy spreading profile by
the variance M(t) = Y ,(n — m)*P,(n|m), the participa-
tion ratio N(t) = {3 ,[P,(n|lm)]?}"", the total transition
probability p(¢), and the out-of-band transition probability
q(t). Both p(r) and ¢(r) are defined as > P(n|m) where
the prime indicates exclusions of the term n = m or

exclusion of the terms |n — m| < b, respectively. The
Schrédinger equation has been integrated numerically
using the self-expanding algorithm of [7] to eliminate
finite-size effects. Namely, additional 105 sites are added
to each edge whenever the probability of finding the
“particle” at the edge sites exceeded 1075, Figure 1
illustrates the time evolution of the energy spreading pro-
file. From such plots we define various time scales. The
times tp,1; and 7, pertain to M(r) and mark the departure
time from ballistic behavior and the crossover time to
saturation. The time ty, pertains to N(z) and marks the
crossover to a stationary distribution. The time scale
pertainsto p(r) and marks the disappearance of the smple
perturbative structure [see (2) below]. The asymptotic
value of ¢(7), if it is much less than 1, indicates that the
system is either in the standard perturbative regime or in
the Wigner regime, where out-of-band transitions can be
neglected. The saturation profile is given by the expres-
sion Px(n|lm) = Y, (n|la)*[{a|m)|?, and it is roughly
approximated by the autoconvolution of Wg(r). Therefore
the saturation profiles (Fig. 1) are similar to the average
shape of the eigenstates. We have found that M ()
satisfies a scaling relation Y = 2X[1 — exp(—1/2X)]
where X = (6/A)/b%? and Y = [M(«)]'/2/b%. This
scaling relation is similar to the one that pertains to the
average shape of the eigenstates [4].

In the standard perturbative regime each eigenstate of
H islocalized “ perturbatively” in one energy level. Thus,
for arbitrarily long times the probability is concentrated
mainly in the initial level. We can write schematically [5]

P,(nlm) = 8,, + Tail(n — m;1t), 2

whereTail(n — m;t) = (o/h)*tF,[(E, — E,)/h]within
the range of first-order transitions (0 < |n — m| < b),
and zero otherwise. Here F,(w) = t[sinc(wt/2)]? is the
spectral content of a constant perturbation of duration ¢,
and sinc(x) = sin(x)/x. We have trivial recurrences from
n to m once r becomes larger than 27 h/(E, — E,,). The
global crossover to quasiperiodic behavior is marked by
the Heisenberg time ry = 27//A. The total normaliza-
tion of the tail is much less than unity at any time.

In the Wigner regime, one observes that the perturbative
expression (2) is still valid for sufficiently short times
t < tpy. Let us estimate the perturbative break time
tpre. FOr short times (+ < 7;) the spectral function F,(w)
is very wide compared with the bandwidth A, of first-
order transitions. Conseguently, we can use the replace-
ment F,(w)+— t and we get that the total transition
probability is p(t) = b X (ot/h)?. On the other hand,
for t > 7, the spectral function F,(w) is narrow com-
pared with the bandwidth, and it can be approximated by
adetafunction. Asaresult weget p(t) = o%/(hA) X t.
The condition p(f) ~ 1 determines 1, leading to

; ={ﬁA/02 for 1 <o/A<A/b, 3)
T A/(Wb o) for Vb < o/A.
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FIG. 1. Left:
1. Here b = 80. Right:

Representative examples of time evolution. The units of energy and time are chosen such that ¢ = 1 and & =
Saturation profiles for the following regimes. (a) standard perturbative, (b) Wigner, (c) ergodic,

(d) localization. The distance between the tick marks on the horizontal axis of (a)—(c) is b. In (d) the full scaleis|n — m| < 2000.
The full scale of the vertical log axisis —15 < In(P) < 0. In (a) and (b) the 1/(n — m)? behavior of the (in-band) tail is fitted by
dashed lines. The in-band profile in (b) corresponds to a Lorentzian with a very high accuracy.

It should be noticed that for o ~ A we get 1, ~ ty.
Thus, taking recurrences into account, we come again to
the conclusion, that for o << A there is no perturbative
bresk time. The variance [8E(1)]> = A% X M(z) of the
energy distribution (2) is easily calculated. We get a bal-
listiclike behavior, followed by saturation,

~ (5Ecl/Tcl) for
SE(r) ~ {(SECl for

For t ~ 1, thetail (2) becomes Lorentzian-like, and it is
characterized by a width 71/t = I'. For t > 1, expres-
sion (2) loses its validity, but it is obvious that the energy
cannot spread any more, since it had already acquired the
saturation profile.

It should be realized that neither (2), nor the Lorentzian-
like saturation profile of the Wigner regime, could cor-
respond to the classical spreading profile. In the latter
case the saturation profile is characterized by two genuine
gquantum mechanical scales (I', A,), whereas the classica
ergodic distribution is characterized by the single energy
scale 6 E; seeFig. 2. However, in spite of thislack of cor-
respondence, the variance (4) behaves in a classical-like
fashion. Using the terminology of [5] we have here re-
stricted rather than detailed QCC: The quantal P,(n|m) is
definitely different from its classical analog, but the vari-
ance 5 E(t), unlike the higher moments of the distribution,
turns out to be the same.

In the ergodic regime the time scale 7., becomes larger
than 1., and therefore 7, loses its significance. At ¢ ~
tore the quantal energy spreading just “fills’ the energy
range A,, andweget SE(r) = A,. The perturbative result
(2) is no longer applicable for ¢ > #,. However, the
simplest heuristic picture turns out to be correct. Namely,
once the mechanism for ballisticlike spreading disappears
a stochasticlike behavior takes its place. The stochastic
energy spreading is similar to a random-walk process with
step size A, and transient time 7. Therefore we have a
diffusive behavior 8 E(1)> = Dgt where

Dg = CA2/tyn = CA*b 0 /1 = I (5)

t <7,
t> 7. )
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and the numerical prefactor [7] isC = 0.85. Thisdiffusion
isnot of aclassical nature. The diffusion can go on aslong
as (Dg1)'/? < 8E., hence the ergodic time is

tag = b 32 lia /A? % 1/h. (6)

After this ergodic time the energy spreading profile satu-
rates to a classical-like steady state distribution [4].

In the localization regime the quasiperiodic nature
of the dynamics is important. The “operative’ eigen-
states are defined as those having a non-negligible
overlap with the initial state m. These eigenstates
are located within the energy shell whosewidthis §E;. If
the eigenstates are ergodic, then all of them are operative,
and therefore the effective level spacing between them
is Aesr = A. However, if the eigenstates are localized,
then only ¢ out of them have a significant overlap with
the initial state m, and therefore A.s = SEo/&. The
effective energy spacing A is the relevant energy

A recurrances
tH Wigner | ergodic X Iocalizle;tion
transient tprt 9 diffusion
Tq
¢ ballistic-like tpft
A Ha  BA o
A
Wigner
OF] 4 spe agodic"': localization
A BA  BA o

FIG. 2. The uppper diagram illustrates the various dynami-
cal scenarios (see text). The lower plot illustrates the various
energy-scales that characterize the associated stationary distri-
butions: The bandwidth A, is indicated by a horizontal solid
ling; the width of the nonperturbative component is indicated by
the grey shading. The width of the energy shell is indicated by
the dashed line. The variance § E(«) is indicated by the bold
solid line.



VOLUME 84, NUMBER 10

PHYSICAL REVIEW LETTERS

6 MaRrcH 2000

scale for determination of the crossover to quasiperiodic
behavior. The associated time scale is t* = 27/ Aetr,
and it may be either less than or equal to the Heisenberg
timery = 27h/A. Thelocalization regime is defined by
the condition +* < t.,. Hence the diffusion stops before
an ergodic distribution arises, and we get Dgt* = 8E§.
Inserting the definition of * and solving for ¢ we obtain
the well-known [2,4] estimate ¢ ~ b2. For the break time
we obtain

t* = b0 « (1/F)*73. (7)

Notethat thelocalizationrangeis SE; = €A o« (1/h)4 2.
If the diffusion were of a classical nature, we would get
SE¢ = (1/h)?~! asin the semiclassical analysis of [8].

The various dynamical scenarios discussed above are
summarized by the diagram of Fig. 2, and can be compared
with the data presented in Fig. 3. As expected from the
theoretical considerations we have in the Wigner regime
Thall = tsar = Top @ty = fpr. INtheergodic regimewe
have as expected fya11 = tpr <K T, While tg = fy =
teg. Thus, in the ergodic regime we have a premature
departure of the ballistic behavior, and the appearance of
an intermediate diffusive stage.

Our magjor motivation for studying WBRM model comes
from “quantum chaos’ (see introduction). Namely, the
WBRM model can be regarded as an effective model
for the analysis of the dynamics of a quantized classi-
cally chaotic system. The condition to be in the regime
(0/A) < b'/? can be cast into the form 7 > Cpy, Where
Cpre = 0Eq7 is a classical scale. In this regime the
perturbative result Eq. (4) is valid. The derivation of (4)

O t_ball %
+ t_sat b
Ot prt

X t_sta -

1/2 32

FIG. 3. (a) Thetimes ty, fat, tsia, aNd 2, @re numerically de-
termined. Different values of » are distinguished by the relative
size of the symbols. The axes are X = log(o/A)/log(b), and
Y = log(t/ty)/log(27b). Notethat Y = —1 implies r = 7,
and Y = 0 implies + = ryg. In the ergodic regime ¢, departs
from t,,; and an intermediate diffusive stage appears. The satu-
ration time approaches ry but eventualy drops down once we
enter into the localization regime. (b) Both log[M (e0)]/ log(b)
and log[N()]/ log(b) are plotted versuslog(a/A)/ log(b). The
arrow indicates a globa horizontal shift of the N() plot for
presentation purpose.

is not sensitive to the presence or the absence of subtle cor-
relations between matrix elements. Therefore (4) is valid
in case of the quantized Hamiltonian, as well as in case
of the effective WBRM model. Hence we may say that
the applicability of an effective RMT approachistrivial in
the regime /i > Cp. In contrast to that, in the nonper-
turbative regime (i < Cpy), correlations between matrix
elements become important, and it may have implications
on the dynamical behavior. Whether an effective RMT
approach is valid becomes anontrivial question in the non-
perturbative regime.

In the regime /i > Cp; we have restricted QCC [5]. It
means that QCC holds only for the variance § E(r). Fixing
all the classical parameters, including the time ¢ which is
assumed to be of the order of 7, we can always define
a sufficient condition 7 << Csc for having detailed QCC
[5]. Detailed QCC means that the quantal energy spread-
ing profile P;(n|m) can be approximated by a classical
calculation. The considerations that lead to the determi-
nation of the classical scale Csc are discussed in [5]. We
cannot give an explicit expression for Csc because it isa
nonuniversal (system-specific) parameter. Detailed QCC
implies that Eq. (4) should hold again once the condition
h < Csc is satisfied.

For the WBRM model we have found that for 7 < Cpy¢
there is a premature departure from ballistic behavior, fol-
lowed by an intermediate diffusive behavior. So we have
a contradiction here between RMT considerations on one
hand, and QCC considerations on the other. Thus, if the
RMT approach is nontrivialy valid, then it is only in a
restricted range Csc < /i << Cpy. Outside this regime it
is either trivially valid (4 > C,) and we have restricted
QCC, or elseitisnot valid at al (i <« Csc) and instead
we have detailed QCC. It may be true that in many cases
the RMT considerations are not valid for the purpose of
analyzing time-dependent dynamical scenarios. A simi-
lar observation applies to the theory of a quantum dissi-
pation [5].
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