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Effect of Measurement on the Decay Rate of a Quantum System

Brahim Elattari1,2 and S. A. Gurvitz3

1Department of Condensed Matter Physics, Weizmann Institute of Science, 76100 Rehovot, Israel
2Faculté des Sciences, Université Chouaïb Doukkali, El Jadida, Morocco

3Department of Particle Physics, Weizmann Institute of Science, 76100 Rehovot, Israel
(Received 17 August 1999)

We investigated the electron tunneling out of a quantum dot in the presence of continuous monitoring
by a detector. It is shown that the Schrödinger equation for the whole system can be reduced to new
Bloch-type rate equations describing the time development of the detector and the measured system
at once. Using these equations we find that the continuous measurement of the unstable system does
not affect its exponential decay, exp�2Gt�, contrary to expectations based on the quantum Zeno effect.
However, the width of the energy distribution of the tunneling electron is no longer G, but increases due
to the decoherence, generated by the detector.

PACS numbers: 03.65.Bz, 73.23.Hk
It was suggested that an unstable quantum system slows
down its decay rate under frequent or continuous observa-
tions [1]. This phenomenon, known as the quantum Zeno
effect, is believed to be related to the projection postulate
in the theory of quantum measurements [2]. Indeed, in
the standard example of two-level systems, the probabil-
ity of a quantum transition from an initially occupied un-
stable state is Q�Dt� � a�Dt�2. If we assume that Dt is the
measurement time, which consists in projecting the system
onto the initial state, then after N successive measurements
the probability of finding the unstable system in its initial
state, at time t � NDt, is P�t� � �1 2 a�Dt�2��t�Dt�. It
follows from this result that P�t� ! 1 for Dt ! 0, i.e.,
suppression of quantum transition.

Originally the quantum Zeno effect has been considered
as a slowing down of the decay rate [1] of quantum systems
in which a discrete initial state is coupled to a continuum
of final states. This coupling leads to an irreversible expo-
nential decay from the discrete state to the continuum of
states. This situation is very often encountered in physics,
as, for instance, the a decay of a nucleus, the spontaneous
emission of a photon by an excited atom, the photoelectric
effect, and so on. But from the theoretical and experimen-
tal point of view, the effort has been mainly concentrated
on quantum transitions between isolated levels [3] char-
acterized by an oscillatory behavior between the different
states. In this latter case the slowing down of the transition
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rate has, indeed, been found. However, this was attributed
to the decoherence generated by the detector without an
explicit involvement of the projection postulate [4,5]. On
the other hand, the slowing down of the exponential decay
rate still remains a controversial issue, despite the fact that
it is extensively studied [6–9] and further investigations
are clearly desirable.

In this Letter we focus our attention on the quantum
Zeno effect in exponentially decaying systems, using a
microscopic description which includes the measurement
devices. The latter is an essential point missed in many
studies. This work is motivated by the distinct difference
between continuum energy levels and discrete levels, stated
above, as well as by the theoretical and experimental im-
portance of the subject. We also propose an experimen-
tal setup which is within reach of current experimental
techniques and within which the quantum Zeno effect for
exponentially decaying systems can be investigated. Our
results showed that while the decay rate of the quantum
unstable system is unaffected by the measurement the en-
ergy distribution of the emitted particles can be strongly
affected.

Let us consider an electron tunneling out of a quan-
tum dot to a reservoir of very dense (continuum) states,
Ea . The dot is placed near a quantum point contact con-
nected with two separate reservoirs (Fig. 1). The reservoirs
are filled up to the Fermi levels mL and mR , respectively.
© 2000 The American Physical Society 2047
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FIG. 1. The point-contact detector near the quantum dot. The
energy level E0 of the dot is occupied by an electron, which
tunnels to continuous states Ea of the reservoir. mL and mR are
the Fermi levels in the emitter and the collector, respectively.

Therefore the current I � e2TV�2p flows from the left
(emitter) to the right reservoir (collector), where T is the
transmission coefficient of the point contact and eV �
mL 2 mR is the bias voltage [10]. However, when the
dot is occupied, Fig. 1, the transmission coefficient of the
point contact decreases (T 0 , T ) due to Coulomb repul-
sion generated by the electron inside the dot. Respec-
tively, the current through the quantum dot diminishes,
I 0 , I . Thus, the point contact monitors the occupation
of the quantum dot. Actually, such a point-contact de-
tector has been successfully used in different experiments
[11]. The dynamics of the entire system is determined
by the many-body time-dependent Schrödinger equation
ij �C�t�� � HjC�t��, where the total Hamiltonian consists
of three components H � HQD 1 HPC 1 Hint, describ-
ing the quantum dot, the point-contact detector, and their
mutual interaction, respectively. These three parts can be
written in the form of tunneling Hamiltonians, as
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y
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where the operators c
y
i �ci� correspond to the creation

(annihilation) of an electron in state i. The Va and
Vlr are the hopping amplitudes between the states E0, Ea

and El , Er , respectively. These amplitudes are found to
be directly related to the tunneling rate of the electron
out of the quantum dot (G) and to the penetration coef-
ficient of the point contact (T ) as G � 2pjVaj

2r and
T � �2p�2jVlr j

2rLrR , respectively. Here r are the den-
sity of states in the corresponding reservoirs. The quan-
tity dVlr � V

0
lr 2 Vlr represents the variation of the

point-contact hopping amplitude, when the dot is occupied.
In our derivations we assume that V and r are weakly en-
ergy dependent and �mL 2 mR� ¿ V2r. The latter con-
dition is necessary for the exact solubility of the model.

Consider the entire system in the initial condition, corre-
sponding to occupied quantum dot and filled reservoirs up
to Fermi levels mL and mR , Fig. 1, denoted by jC�0�� �
j0�. This state is not stable: the Hamiltonian (1) requires
it to decay to continuum states. In general, the total wave
function at time t can be written as

jC�t�� �
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b0�t� 1

X
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X
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∏
j0� , (2)

where b�t� are the probability amplitudes of finding the
system in the corresponding state. Using these ampli-
tudes one finds the reduced density matrix by tracing out
the irrelevant degrees of freedom. For instance, s

�0�
00 �t� �

jb0�t�j2 is the probability of finding the system in the initial
state at time t, s

�1�
00 �t� �

P
l,r jblr �t�j2 is the probability of

finding one electron in the collector and the quantum dot
is occupied, s�0�

aa�t� �
P

a jba�t�j2 is the probability for
the electron to tunnel out of the dot into level Ea and no
electron arriving in the collector, and so on. In general,
the total probability for the electron to occupy the dot is
s00�t� �

P
n s

�n�
00 �t�, and the probability of tunneling into

level Ea is saa�t� �
P

n s�n�
aa�t�. Here the subscript n

denotes the number of electrons reaching the collector by
time t. The corresponding off-diagonal density-matrix ele-
ments s0a � s

�
a0 describe the electron in the linear super-

position of the states E0 and Ea .
In order to find the amplitudes b�t�, we substitute

Eq. (2) into the time-dependent Scrödinger equation and
use the Laplace transform b̃�E� �

R`
0 b�t� exp�iEt� dt.

Then we find an infinite set of algebraic equations for the
amplitudes b̃�E�, given by
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VOLUME 84, NUMBER 10 P H Y S I C A L R E V I E W L E T T E R S 6 MARCH 2000
It is very important that the tracing of the reservoir
variables can be carried out directly in Eqs. (3) without
their explicit solutions. As a result, Eqs. (3) are converted
to the Bloch-type equations for the reduced density matrix
s

�n�
ij �t�. Such a technique has been derived in [5,12]. In

this paper we generalize it by converting Eqs. (3) into
rate equations without tracing over all the continuum
states. We, thus, obtain generalized Bloch-type equations
which determine the energy distribution of the tunneling
particles. In the following we outline this derivation,
relegating the technical details to a more extended
publication.

First, we replace each of the sums in Eqs. (3) by an inte-
gral,

P
k !

R
r�Ek� dEk which can be treated analytically.

Equation (3a), for instance, after solving for b̃a and b̃lr in
Eqs. (3b) and (3c), becomes
µ
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2
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∂
b̃0�E� 1 F � i , (4)
where F denotes the terms in which the amplitudes b̃
cannot be factorized out of the integrals. These terms
vanish when the integration limits are extended to infin-
ity [the large bias limit, �mL 2 mR� ¿ V

2
L,RrL,R]. This

is due to the fact that the singularities of the amplitudes
b̃, as functions of the variables El,r ,a , lie on the same
side of the integration contour. The remaining integrals
in Eq. (4) can be split into a sum of singular and principal
parts. The singular parts yield iG�2 1 iD0�2, where D0 �
�2p� jV0

lr j
2rLrR�ml 2 mR�. While the principal parts

induce a shift of energy which is merely absorbed by a
redefinition of the energy levels. Performing the same pro-
cedure with all other equations (3), we reduce them to the
following system of equations [5,12]
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· · · ,

where D � �2p� jVlr j
2rLrR�ml 2 mR�. In order to transform Eqs. (5) to equations for the density matrix we multiply

each of them by the corresponding complex conjugate amplitude b��E0�. For instance, by multiplying Eq. (5b) by b�
a�E0�

and subtracting its complex conjugated equation multiplied by ba�E� we obtain

�E 2 E0 1 iD�ba�E�b�
a�E0� � Va�b0�E�b�

a�E0� 2 b�
0�E0�ba�E�� . (6)

It is quite easy to see that the inverse Laplace transform turns this equation to the following one for the density matrix:

�s�0�
aa � 2Ds�0�

aa 1 iVa�s�0�
0a 2 s

�0�
a0� . (7)

Proceeding in the same way with all other equations (5) and integrating over the continuum states of the collector and
the emitter, we obtain the following infinite set of equations for the density matrix s�t�:
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Equations (8) are a generalization of the previously derived
Bloch-type rate equations for quantum transport in meso-
scopic systems [5,12]. They have a clear physical interpre-
tation. Consider, for example, Eq. (8a) for the probability
of finding the electron inside the dot and n electrons in the
collector. It decreases due to one-electron hopping to the
collector (with rate D0) or due to the electron tunneling out
of the dot (with rate G). These processes are described by
the first (“loss”) term in Eq. (8a). On the other hand, there
exists the opposite (“gain”) process when the state with
�n 2 1� electrons in the collector converts into the state
with n electrons in the collector. It also takes place due to
penetration of one electron through the point contact with
the same rate D0 [the second term in Eq. (8a)].

The evolution of the off-diagonal density-matrix ele-
ments, Eq. (8c), can be interpreted in the same way as the
rate equation for the diagonal terms. Note, however, the
difference between the loss and the gain terms. The lat-
ter can appear only due to coherent transition of the whole
linear superposition [5,12].
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Since our rate equations distinguish between different
continuum states (Ea), we can find the energy distribution
of the tunneling electron by tracing out the detector states
n in Eqs. (8). As a result we obtain the following final
equations for the electron density matrix s�t�:

�s00 � 2Gs00 , (9a)

�saa � iVa�s0a 2 sa0� , (9b)

�sa0 � i�E0 2 Ea�sa0 2 iVas00 2
G 1 Gd

2
sa0 .

(9c)

Here Gd � �
p

D 2
p

D0�2 is the decoherence rate [5].
It is instructive to compare Eqs. (9) with the similar

Bloch-type equations describing quantum transitions be-
tween two isolated levels [5,13]. In the case of isolated
levels (E1 and E2), the equations for the density matrix s

are symmetric with respect to E1 and E2. Whereas in the
case of transition between the isolated (E0) and the contin-
uum states (Ea) the corresponding symmetry, between E0
and Ea , is broken as can be seen from Eq. (9c).

The probability of finding the electron inside the dot is
obtained directly from Eq. (9a) given by

s00�t� � exp�2Gt� . (10)

It means that the continuous monitoring of the unstable
system does not slow down its exponential decay. Nev-
ertheless, it can be shown that the energy distribution of
the tunneling electron, P�Ea� � saa�t ! `�, is affected.
Indeed, by solving Eqs. (9) in the limit of t ! ` we find
a Lorentzian distribution centered about Ea � E0:

P�Ea� �
jVaj

2

G

G 1 Gd

�E0 2 Ea�2 1 �G 1 Gd�2�4
. (11)

If there is no coupling with the detector, Gd � 0, the
Lorentzian width (the linewidth) G is exactly the inverse
lifetime of the quasistationary state, Eq. (10). However,
it follows from Eq. (11) that the measurement results in a
broadening of the linewidth, which becomes G 1 Gd due
to the decoherence generated by the detector. At first sight
this result might look very surprising. Indeed, it is com-
monly accepted that the linewidth does correspond to the
lifetime. Yet, we demonstrated here that it might not be
the case when the system interacts with an environment
(the detector). To understand this result, one might think
of the following argument. Because of the measurement,
the energy level E0 suffers an additional broadening of the
order of Gd . However, this broadening does not affect the
decay rate of the electron G, since the exact value of E0
relative to Ea is irrelevant to the decay process. In con-
trast, the probability distribution P�Ea� is affected because
it does depend on the position of E0 relative to Ea as can
be seen in Eq. (11).

Although our result has been proved for a specific detec-
tor, we expect it to be valid for the general case, provided
that the density of states r and the transition amplitude
2050
V vary slowly with energy. This condition is sufficient to
obtain a pure exponential decay of the state E0. On the
contrary, if ra�Ea� or Va depend sharply on energy, then
the integrals in Eq. (4) yield additional E-dependent terms
that modify both the exponential dependence of the decay
probability, Eq. (10), and the energy distribution, Eq. (11).
As a result, the measurement process could hinder the de-
cay rate [14].

We emphasize that our results were obtained from the
Schrödinger equation describing the dynamical evolution
of the entire system, without explicit use of the projection
postulate. This is in contrast with other works, as, for
instance, [6], where the reduction was repeatedly involved
during the continuous measurement process. Although our
final result does not display any slowing down of the decay
rate, it should not be considered as a contradiction with the
projection postulate. Indeed, the hindering of the decay
rate, generated by the projection postulate, relies on the
assumption that the probability of transitions between dif-
ferent quantum states is Q�Dt� � a�Dt�2. It is definitely
correct for transitions between isolated states, where
the transition probability has an oscillatory behavior.
However, in the case of transitions from isolated to very
dense states, Q�t� represents a sum of many oscillations
with close frequencies. When averaged over the time
interval dt � 1�Ē, where Ē is the width of the function
jV�E�j2r�E� (in our case Ē ! `), the resulting Q�t�
would then represent a pure exponential decay. In this
case Q�Dt� ~ Dt, so that repeated applications of the
projection postulate would not change the lifetime of the
decayed state. But, if dt is finite, then s00�t� exhibits
deviations from the exponential behavior, which could
result in the quantum Zeno effect [6].

In conclusion, we have given a microscopic description
of the quantum Zeno effect in pure exponentially decaying
quantum systems including the measurement devices. Our
results show that while the measurements do not affect the
decay rate, the energy distribution of the tunneling electron
is broadened. This description applies to a wide range
of physical processes as mentioned at the beginning of
this Letter. In particular, it can be verified in experiments
with mesoscopic quantum dots, by using the point-contact
detector [11], or an alternative setup.
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