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The relation between Ising spin systems and public-key cryptography is investigated using methods of
statistical physics. The insight gained from the analysis is used for devising a matrix-based cryptosystem
whereby the ciphertext comprises products of the original message bits; these are selected by employing
two predetermined randomly constructed sparse matrices. The ciphertext is decrypted using methods
of belief propagation. The analyzed properties of the suggested cryptosystem show robustness against
various attacks and competitive performance to modern cyptographical methods.

PACS numbers: 89.70.+c, 03.67.Dd, 05.50.+q, 89.80.+h
Public-key cryptography plays an important role in
many aspects of modern information transmission, for
instance, in the areas of electronic commerce and internet-
based communication. It enables the service provider
to distribute a public key which may be used to encrypt
messages in a manner that can be decrypted only by the
service provider. The ongoing search for safer and more
efficient cryptosystems produced many useful methods
over the years such as RSA (by Rivest, Shamir, and
Adleman), elliptic curves, and the McEliece cryptosystem,
to name but a few.

In this Letter, we employ methods of statistical physics
to study a specific cryptosystem, somewhat similar to the
one presented by McEliece [1]. These methods enable
one to study the typical performance of the suggested
cryptosystem, to assess its robustness against attacks, and
to select optimal parameters.

The main motivation for the suggested cryptosystem
comes from previous studies of Gallager-type error-
correcting codes [2–4] and their physical properties [5,6].
The analysis exposes a significantly different behavior for
the two-matrix based codes (such as the MN code [3])
and single-matrix codes [4], which may be exploited for
constructing an efficient cryptosystem.

In the suggested cryptosystem, a plaintext represented
by an N dimensional Boolean vector j [ �0, 1�N is
encrypted to the M dimensional Boolean ciphertext J
using a predetermined Boolean matrix G, of dimension-
ality M 3 N , and a corrupting M dimensional vector z ,
whose elements are 1 with probability p and 0 otherwise,
in the following manner:

J � Gj 1 z , (1)

where all operations are (mod 2). The matrix G and the
probability p constitute the public key; the corrupting vec-
tor z is chosen at the transmitting end. The matrix G,
which is at the heart of the encryption/decryption process
is constructed by choosing two randomly selected sparse
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matrices A and B of dimensionality M 3 N and M 3 M,
respectively, defining

G � B21A �mod 2� .

The matrices A and B are generally characterized by K
and L nonzero unit elements per row and C and L per col-
umn, respectively; all other elements are set to zero. The
finite, usually small, numbers K , C, and L define a par-
ticular cryptosystem; both matrices are known only to the
authorized receiver. Suitable choices of probability p will
depend on the maximal achievable rate for the particular
cryptosystem as discussed below.

The authorized user may decrypt the received ciphertext
J by taking the (mod 2) product BJ � Aj 1 Bz . Solv-
ing the equation

AS 1 Bt � Aj 1 Bz �mod 2� (2)

is generally computationally hard. However, decryption
can be carried out for particular choices of K and L via
the iterative methods of belief propagation (BP) [3], where
pseudoposterior probabilities for the decrypted message
bits, P�Si � 1jJ� 1 # i # N (and similarly for t ), are
calculated by solving iteratively a set of coupled equations
for the conditional probabilities of the ciphertext bits given
the plaintext and vice versa. For details of the method used
and the explicit equations see [3].

The unauthorized receiver, on the other hand, faces the
task of decrypting the ciphertext J knowing only G and p.
The straightforward attempt to try all possible z construc-
tions is clearly doomed, provided that p is not vanishingly
small, giving rise to only a few corrupted bits; decompos-
ing G to the matrices A and B is known to be a computa-
tionally hard problem [7], even if the values of K , C, and
L are known. Another approach to study the problem is
to exploit the similarity between the task at hand and the
error-correcting model suggested by Sourlas [4], which we
will discuss below.

The treatment so far was completely general. We will
now make use of insight gained from our analysis of
© 2000 The American Physical Society
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Gallager-type [5] and Sourlas [6] error-correcting codes
to suggest a specific cyptosystem construction and to as-
sess its performance and capabilities. The method used in
both analyses [5,6] is based on mapping the problem onto
an Ising spin system Hamiltonian, in the manner discov-
ered by Sourlas [4], which enables one to analyze typical
properties of such systems.

To facilitate the mapping we employ binary representa-
tions �61� of the dynamical variables S and t , the vectors
J, z , and j , and the matrices A, B, and G, rather than the
Boolean �0, 1� ones.

The binary ciphertext J is generated by taking products
of the relevant binary plaintext message bits J�i1,i2,...� �
ji1ji2 . . . z�i1,i2,...�, where the indices i1, i2, . . . correspond
to the nonzero elements of B21A, and z�i1,i2...� is the cor-
responding element of the corrupting vector (the indices
�i1, i2 . . .� correspond to the specific choice made for each
ciphertext bit). As we use statistical mechanics techniques,
we consider both plaintext (N) and ciphertext (M) di-
mensionalities to be infinite, keeping the ratio between
them N�M finite. Using the thermodynamic limit is quite
natural here as most transmitted ciphertexts are long and
finite-size corrections are likely to be small.

An authorized user may use the matrix B to obtain
Eq. (2). To explore the system’s capabilities one exam-
ines the Gibbs distribution, based on the Hamiltonian

H �
X

�i1,...,iK ;j1,...,jL�
D�i1,...,iK ;j1,...,jL�

3 d�21;J�i1,...,iK ;j1,...,jL�Si1 . . . SiK tj1 . . . tjL�

2
Fs

b

NX
i�1

Si 2
Ft

b

MX
j�1

tj . (3)

The tensor product D�i1,...,iK ;j1,...,jL�J�i1,...,iK ;j1,...,jL�, where
J�i1,...,jL� � ji1ji2 . . . jiK zj1zj2 . . . zjL , is the binary equiva-
lent of Aj 1 Bz , treating both signal (S and index i) and
the corrupting noise vector (t and index j) simultaneously.
Elements of the sparse connectivity tensor D�i1,...,jL� take
the value 1 if the corresponding indices of both signal and
noise are chosen (i.e., if all corresponding elements of the
matrices A and B are 1) and 0 otherwise; it has C unit
elements per i index and L per j index, representing the
system’s degree of connectivity. The d function provides
1 if the selected sites’ product Si1 . . . SiK tj1 . . . tjL is in
disagreement with the corresponding element J�i1...,jL�,
recording an error, and 0 otherwise. Notice that this term
is not frustrated, and can therefore vanish at sufficiently
low temperatures (T � 1�b ! 0), imposing the restric-
tion of Eq. (2), while the last two terms, scaled with b,
survive. The additive fields Fs and Ft are introduced
to represent our prior knowledge of the signal and noise
distributions, respectively.

The random selection of elements in D introduces
disorder to the system which is treated via methods of
statistical physics. More specifically, we calculate the
partition function Z�D , J� � Tr�S,t 	 exp�2bH �, which
is then averaged over the disorder and the statistical prop-
erties of the plaintext and noise, using the replica method
[5,8], to obtain the related free energy F � 2�lnZ �j,z ,D .
The overlap between the plaintext and the dynamical
vector m � 1

N

PN
i�1 jiSi will serve as a measure for the

decryption success.
Studying this free energy for the case of K � L � 2,

and in the context of error-correcting codes [5], indi-
cates the existence of paramagnetic and ferromagnetic
solutions depicted in the inset of Fig. 1. For corruption
probabilities p . ps one obtains either a dominant
paramagnetic solution or a mixture of ferromagnetic
(m � 61) and paramagnetic (m � 0) solutions as
shown in the inset; thin and thick lines correspond to
higher and lower free energies, respectively; dashed
lines represent unstable solutions. Lines between the
m � 61 and m � 0 axes correspond to suboptimal
ferromagnetic solutions. Reliable decryption may be
obtained only for p , ps, which corresponds to a spino-
dal point, where a unique ferromagnetic solution emerges
at m � 1 (plus a mirror solution at m � 21).

The most striking result is the division of the complete
space of S and t values to two basins of attraction for
the ferromagnetic solutions, for p , ps, implying conver-
gence from any initialization of the BP equations. Critical
corruption rate values for M�N � 2 were obtained from
the analysis and via BP solutions as shown in Fig. 1, in
comparison to the rate obtainable from Shannon’s chan-
nel capacity [9] (solid line). The priors assumed for both
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FIG. 1. Critical transmission rate as a function of the corrup-
tion rate p for an unbiased ciphertext. Numerical solutions (of
the analytically obtained equations, �) and BP iterative solu-
tions (of system size N � 104, 1), were averaged over 10 dif-
ferent initial conditions of almost zero magnetization with error
bars much smaller than the symbol size. Inset: The ferromag-
netic (F) (optimal/suboptimal) and paramagnetic (P) solutions
as functions of p; thick and thin lines denote stable solutions of
lower and higher free energies, respectively; dashed lines corre-
spond to unstable solutions.
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the plaintext (unbiased in this case, Fs � 0) and the cor-
rupting vector [Ft � �1�2� ln��1 2 p��p� ] correspond to
Nishimori’s condition [10], which is equivalent to having
the correct prior within the Bayesian framework [11].

The initial conditions for the BP-based decryption
were chosen almost at random, with a very slight bias
of O �10212� in the initial magnetization, corresponding
to typical statistical fluctuation for a system size of
1024. Cryptosystems with other K and L values, e.g.,
K , L $ 3, seem to offer optimal performance in terms of
the corruption rate they accommodate theoretically, but
suffer from a decreasingly small basin of attraction as K
and L increase. The coexistence of stable ferromagnetic
and paramagnetic solutions implies that the system will
converge to the undesired paramagnetic solution [5] from
most initial conditions which are typically of close-to-zero
magnetization. It may still be possible to use successfully
specific matrices with higher K and L values (such as in
[12]); however, these cannot be justified theoretically and
there is no clear advantage in using them.

To conclude, for the authorized user, the K � L � 2
cryptosystem offers a guaranteed convergence to the plain-
text solution, in the thermodynamic limit N ! `, as long
as the corruption process has a probability below ps. The
main consequence of finite plaintexts would be a decrease
in the allowed corruption rate with little impact on the de-
coding success.

The task facing the unauthorized user, i.e., finding the
plaintext from Eq. (1), was investigated via similar meth-
ods by considering the Hamiltonian

H � 2
X

�i1,...,iK0 �
G�i1,...,iK0 �J�i1,...,iK0 �Si1 . . . SiK0 2

Fs

b

NX
k�1

Sk ,

using Nishimori’s temperature b � �1�2� ln��1 2 p��p�.
The number of plaintext bits in each product is denoted
K 0, S is the N dimensional binary vector of dynamical
variables, and G is a dense tensor with C0 unit elements
per index (setting the rest of the elements to zero) and is the
binary equivalent of the Boolean matrix G [6]. The latter,
together with the statistical properties of the corrupting
vector z , constitutes the public key used to determine the
ciphertext J. The last term on the right is required in
the case of sparse or biased messages and will require
assigning a certain value to the additive field Fs.

The matrix G generated in the case of K � L � 2 is
dense and has a certain distribution of unit elements per
row. The fraction of rows with a low [finite, not of O �N�]
number of unit elements vanishes as N increases, allowing
one to approximate this scenario by the diluted random
energy model [13] studied in [6] where K 0, C0 ! ` while
keeping the ratio C0�K 0 finite.

To investigate the typical properties of this (frustrated)
model, we calculate again the partition function and the
free energy by averaging over the randomness in choosing
the plaintext, the corrupting vector, and the choice of the
2032
random matrix G (being generated by a product of two
sparse random matrices). To assess the likelihood of ob-
taining spin-glass/ferromagnetic solutions, we calculated
the free-energy landscape (per plaintext bit f) as a func-
tion of overlap m. This can be carried out straightfor-
wardly using the analysis of [5], and provides the energy
landscape shown in Fig. 2. This has the structure of a
golf course with a relatively flat area around the one-step
replica symmetry breaking (frozen) spin-glass solution and
a very deep but extremely narrow area, of O �1�N�, around
the ferromagnetic solution. To validate the use of the ran-
dom energy model we also added numerical data (1, with
error bars), obtained by BP, which are consistent with the
theoretical results.

This free-energy landscape may be related directly to the
marginal posterior P�Si � 1jJ� 1 # i # N and is there-
fore indicative of the difficulties in obtaining ferromag-
netic solutions when the starting point for the search is
not infinitesimally close to the original plaintext (which is
clearly highly unlikely). It is plausible that any local search
method, starting at some distance from the ferromagnetic
solution, will fail to produce the original plaintext. Simi-
larly, any probabilistic method, such as simulated anneal-
ing, will require an exponentially long time for converging
to the m � 1 solution. Numerical studies of similar energy
landscapes show that the time required increases exponen-
tially with the system size [14].

Most attacks on this cryptosystem, by an unauthorized
user, will face the same difficulty: without explicit knowl-
edge of the current plaintext and/or the decomposition of
G to the matrices A and B it will require an exponentially
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FIG. 2. The free-energy landscape as a function of m for the
transmission rate N�M � 1�2 and flip rate p � 0.08; theoreti-
cal values are represented by the solid line; numerical data, ob-
tained by BP (N � 200) and averaged over 10 different initial
conditions, are represented by symbols (1). The landscape is
deep and narrow [of width O �1�N�] at m � 1 and rather flat
elsewhere. Inset: scattered plot of mean decryption times, t.
The optimal fitting of straight lines through the data provides
another indication for the divergence of decryption time for cor-
ruption rate close to ps � 0.953 6 5 (in this example).



VOLUME 84, NUMBER 9 P H Y S I C A L R E V I E W L E T T E R S 28 FEBRUARY 2000
long time to decipher a specific ciphertext. Partial or com-
plete knowledge of the ciphertext and/or plaintext as well
as partial knowledge of the matrix B [while O �N� of the
elements remain unknown] will not be helpful for decom-
posing G which will still require an exponentially long
time to carry out.

We will consider here two attacks on specific plaintexts
with partial knowledge of the corrupting vector z or of the
matrix B. In the first case, knowing paM of the pM cor-
rupting bits may allow one to subtract the approximated
vector bz from the ciphertext and take the product of G21

and the resulting ciphertext. This attack is similar to the
task facing an unauthorized user with a reduced corrup-
tion rate of �p 2 pa�. For any nonvanishing difference
between pa and p, deciphering the transmitted message
remains a difficult task.

A second attack is that whereby the matrix B is
known to some degree; for instance, the location of
a fraction of the unit elements, say 1 2 r is known.
From Eq. (2) one can identify the absent informa-
tion as having a higher effective corruption level of
p 1 g�r�, where g�?� is some nontrivial function that
depends on the actual scenario. To secure the trans-
mission one may work sufficiently close to the critical
corruption level ps such that the additional effective noise
r will bring the system beyond the critical corruption rate
and into the paramagnetic/spin-glass regime. However,
the drawbacks of working very close to ps are twofold:
First, average decryption times using BP methods (t) will
diverge proportionally to 1��ps 2 p� as demonstrated in
the inset of Fig. 2. Second, finite-size effects are expected
to be larger close to ps, which practically means that
the system may not converge to the attractive optimal
solutions in some cases.

We will end this presentation with a short discussion
on the advantages and drawbacks of the suggested method
in comparison with existing techniques. First, we point
out the differences between this method and the McEliece
cryptosystem. The latter is based on Goppa codes and
is limited to relative low corruption levels. These may
allow for decrypting the ciphertext using (many) estimates
of the corruption vector. Our suggestion allows for a sig-
nificant corruption level, thus increasing the security of
the cryptosystem. In addition, the suggested construction,
K � L � 2, is not discussed in the information theory lit-
erature (e.g., in [3]) which typically prefers higher K , L
value systems. Second, in comparison to RSA where de-
cryption takes O �N3� operations, our method requires only
O �N� operations, multiplied by the number of BP itera-
tions (which is typically smaller than 100 for most system
sizes examined except very close ps). Encryption costs are
of O �N2� (as in RSA) while the inversion of the matrix B
is carried out only once and requires O�N3� operations.

The two obvious drawbacks of our method are the
following: (1) the transmission of the public key, which
is a dense matrix of dimensionality M 3 N . However, as
public-key transmission is carried out only once for each
user we do not expect it to be of great significance. (2) The
ciphertext to plaintext bit ratio is greater than one to
allow for corruption, in contrast to RSA where it equals
1. Choosing the N�M ratio is in the hands of the user
and is directly related to the security level required;
we therefore do not expect it to be problematic as the
increased transmission time is compensated by a very fast
decryption.

We examine the typical performance of a new cryptosys-
tem, based on insight gained from our previous studies, by
mapping it onto an Ising spin system; this complements
the information theory approach which focuses on rigorous
worst-case bounds. We show that authorized decryption is
fast and simple while unauthorized decryption requires a
prohibitively long time. Important aspects that are yet to
be investigated include finite-size effects and methods for
alleviating the drawbacks of the new method.
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