
PHYSICAL REVIEW

LETTERS

VOLUME 84 10 JANUARY 2000 NUMBER 2
Backward-to-Forward Jump Rates on a Tilted Periodic Substrate
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Driven diffusion of a Brownian particle along a one-dimensional lattice is investigated numerically on
decreasing its damping constant. The notions of multiple jumps, jump reversal, and backward-to-forward
rates are discussed in detail. In particular, we conclude that in the underdamped limit backward jumps are
suppressed relative to forward jumps more effectively than previously assumed. The dependence of such
a drive-controlled mechanism on the damping constant and the temperature is interpreted analytically.
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The decay of an asymmetric metastable state, repre-
sented, for instance, by the tilted potential wells of Fig. 1,
plays a crucial role in the theories of chemical reactions
[1] and lattice defects [2], to mention two among the most
historically sigificant examples. Moreover, forced Brown-
ian motion on periodic substrates [like the one-dimensional
potential illustrated in Fig. 1(c)] provides an archetypal
model of transport in condensed phase, notable examples
being resistively shunted Josephson junctions [3], super-
ionic conductors [4], plasma accelerators [5], adsorbates
on crystal surfaces [6], and polymers diffusing at interfaces
[7]. Brownian diffusion in the overdamped limit is by now
a fully understood stochastic process, whose application to
physical systems can be worked out in great detail [8,9].
Low damping diffusion, instead, while accounting for most
inertial effects observed in real experiments—think of I-V
characteristics of shunted Josephson junctions [9–11], dis-
location losses in metals [12], dissipation in threshold de-
vices [13], etc.—gives rise to more complicated transport
mechanisms, whose description is not completed, yet, de-
spite Risken’s monumental work [8].

An equilibrium chemical reaction is often modeled as
an escape process that takes place in a two-well potential
[1]. As the reaction proceeds from the left to the right,
or vice versa, one defines the corresponding mean-first-
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passage time (MFPT) TR , or TL, for the chemical coordi-
nate x�t� to overcome the barrier at x0 from the left, or the
right, respectively [14]. A simple combination of these
two Kramers times yields the equilibrium reaction rate
l � T21

R 1 T21
L . For very large values of the damping

constant (Smoluchowski approximation) TR and TL can
be computed analytically with great accuracy; in particu-
lar, one easily proves that TL�TR � exp�2DV�kT �, where
DV�kT is the reaction-to-thermal energy ratio.

On turning the bistable potential in Fig. 1(a) upside
down, we obtain a metastable asymmetric well (Duffing
oscillator) with identical decay rate l. The isospectrality
of the discrete transformation connecting the two problems
is discussed in Ref. [8]. The asymmetric Duffing well can
be interpreted as a two-exit MFPT model: The escape time
T0 � l21 is uniquely defined irrespective of the actual exit
point, xL or xR , chosen by the coordinate x�t� to exit the
well. Correspondingly, one introduces the probabilities p6

for the exit event to occur through xR or xL, respectively. In
the overdamped limit, the backward-to-forward rate (BFR)
p2�p1 boils down to the Arrhenius factor exp�2DV�kT �
[14]. The spectral symmetry of the two escape problems
of Fig. 1(a) is thus made even stronger in the overdamped
limit by the additional identity p2�p1 � TL�TR (for a nu-
merical verification see Fig. 2).
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FIG. 1. Asymmetric one-dimensional potential wells.
(a) Upside-down inversion of a tilted quartic double-well
potential. Note that the energy barrier difference DV is the
same before and after the transformation. (b) Cosine potential
well for zero and finite tilt. The tilt shifts the position of
the barriers and the well bottoms, i.e., xR,L � 6�a�2 6 x0�
and x0 � �a�2p� arcsin�aF�2pv

2
0 �, where v

2
0 is the cosine

amplitude. (c) Tilted washboard potential, as obtained by
continuously connecting replicas of the tilted cosine well in
(b). The exit trajectory depicts a jump reversal.

In the opposite limit of vanishingly small damping
constant, the explicit calculation of the escape times TR

or TL over the barrier of the two-well potential, though
more complicated [8,9], leads again to the same Arrhenius
law, TL�TR � exp�2DV�kT �, as in the Smoluchowski
approximation. Furthermore, the isospectrality property
of the inverted potentials holds good in the presence of
inertial effects, too (i.e., for finite values of the damping
constant). This means that we are left with the ultimate
task of determining to what extent the decay through the
forward channel (with probability p1) is more likely than
through the backward one (with probability p2).

This brings us to the central question addressed in this
Letter: How does a BFR like p2�p1 depend on the
damping constant? Here, we anticipate the main conclu-
sion of this work, that, at variance with TL�TR , the ratio
p2�p1 gets strongly suppressed in the underdamped limit;
such an asymmetry controlled mechanism turns out to be
much more effective than recognized in the earlier litera-
ture [9–11].

The question above has a natural counterpart in the char-
acterization of stationary transport along a tilted washboard
204
FIG. 2. Exit event statistics in the overdamped limit for differ-
ent kT�v

2
0 and g�v0 values. All simulation results are given in

dimensionless units. Dashed lines represent the MFPT predic-
tions for T0�F��T0�0� (upper curves) and p2�p1 (lower curves),
respectively. Note that in the overdamped limit no g dependence
of the plotted ratios is expected.

potential [like that created in Fig. 1(c) by connecting con-
tinuously the individual asymmetric wells of Fig. 1(b)].
As shown in Refs. [15–19], an underdamped Brownian
particle falls down a tilted periodic substrate by perform-
ing multiple jumps, that is, over many a potential barrier.
A particle trapped into a certain potential well can exit it
by jumping either to the right (forward) or to the left (back-
ward); moreover, no matter what side it jumps, the particle
can get retrapped either to the right or to the left from its
starting well or, equivalently, it may reverse its velocity on
the jumping process. Thus, more different (though related)
definitions of BFR may be introduced to which our ques-
tion, as of their damping constant dependence, applies.

Our simulation code is based on a standard one-step
collocation algorithm for the integration of stochastic dif-
ferential equations. To allow an easier comparison of
BFRs from decay and transport processes we simulated
the Langevin equation (in rescaled units)

ẍ � 2g �x 2 v2
0 sin x 1 F 1 j�t� , (1)

where the force terms on the right-hand side (rhs) rep-
resent, respectively, a viscous damping with constant
g, a spatially periodic, tilted substrate described by the
potential

V �x, F� � v2
0�1 2 cosx� 2 Fx (2)

[see Fig. 1(c)], and a stationary Gaussian noise with
zero mean �j�t�� � 0 and autocorrelation function
�j�t�j�0�� � 2gkTd�t�. At low temperatures, kT ø v

2
0 ,

the system (1) undergoes a sudden locked-to-running
transition as the tilt amplitude is increased above a certain
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threshold F2 � 3.36v0g; correspondingly, the stationary
current � �x� jumps from exponentially small intensities for
F , F2 to a free-fall asymptotic value F�g for F . F2
[8,19].

On imposing absorbing boundary conditions at xL and
xR , the MFPT out of a single potential well can be com-
puted with arbitrarily high statistics. As a caveat we re-
mind the reader that the simulation outcome may depend
(weakly at low temperature) on the choice of the initial
conditions—for simplicity we set x�0� � x0, �x�0� � 0.
Periodic boundary conditions at xL and xR are required
to simulate a stationary probability current; however, the
jump statistics is sensitive to the definition of particle
trapping. Here, we agree to consider the diffusing par-
ticle as trapped in the well centered at x0, if it has so-
journed in the unit cell �xL, xR� for a time lapse not shorter
than �2g�21, the relaxation time of the energy variable
E�x, �x� � �x2�2 1 V �x, 0� [8]. Our initial conditions for
the decay of a metastable state and the trapping criterion
for the stationary jumping dynamics are consistent with
one another as shown in Fig. 4(a), below.

Decay of an asymmetric well.—Figures 2, 3(a), and
4(a) summarize the statistics of the decay process out of
an asymmetric metastable state. In the overdamped limit
of Fig. 2 the BFR p2�p1 is clearly independent of the
damping constant and vanishes with increasing the tilt am-
plitude F according to the (leading order) Arrhenius law

p2�p1 � exp�2aF�kT � (3)

with a � 2p . For the sake of a comparison we also
plotted the MFPT predictions for the ratios T0�F��T0�0�
and p2�p1 versus F: as expected, the agreement is very
close [14].

FIG. 3. Backward-to-forward rates for the decay of an
asymmetric well p2�p1 (a) and in the stationary flow regime
n2�n1 (b) at different temperatures kT�v

2
0 � 1.2 (diamonds),

0.8 (squares), and 0.4 (circles).
The underdamped limit reveals more interesting proper-
ties: (i) The ratio p2�p1 decays exponentially with F but
at a much faster rate than previously assumed, namely,

p2�p1 � exp�2F�Fe�T , g�� (4)

with Fe ø kT�a [see Fig. 3(a)]. (ii) The tilt constant Fe

scales like
p

gT as displayed in Fig. 4(a). (iii) The above
properties apply to the BFR out of a trapping well in the
stationary flow regime, too. Even more remarkably, the
tilt constant Fe�T , g� is numerically the same for the two
problems, at least for the initial conditions and trapping
criterion adopted in the present simulation.

The analytical estimate for Fe�T , g� plotted in Fig. 4(a)
was obtained through a simple rate argument. As proven
by Risken and co-workers [8], the excitable energy states
that contribute to the stationary current along a tilted cosine
potential all belong to a thin �x, �x� phase-space (or “skin”)
layer with upper energy bound 2v

2
0 (the energy barrier of

the cosine potential) and width kT
p

aF1�2kT [with F1 �
�4�p�v0g and a � 2p]. Exiting a potential well to the
left, that is, against the external force F, implies wasting an
additional energy aF off the available layer energy; hence,
the exponential law (4) with

Fe�T , g� �
kT
a

s
aF1

2kT
. (5)

Jumps in the stationary flow regime.—A more practi-
cal definition of BFR in the presence of a stationary flow

FIG. 4. Theoretical interpretation of the BFR decay. (a) The
tilt constant Fe�T , g� that fits the BFR data for the decay of a
metastable state (solid circles) and of a trapped particle in the
stationary flow regime (open circles). The open circles have
been obtained by varying g�v0 with kT�v

2
0 � 0.8, the solid

circles by varying kT�v
2
0 at g�v0 � 1.27 3 1022. The dashed

line represents the fitting laws (4) and (5). (b) The average
trajectory length l̄ in units of a for F � 0 and different values of
kT�v

2
0 (with g�v0 � 1.27 3 1022, solid circles) and different

values of g�v0 (with kT�v
2
0 � 0.8, open squares). The dashed

line represents the fitting law (7).
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is provided by the backward-to-forward jump rate ratio
n2�n1. Here, n6 denote the fractions of jumps that land
to the right or left from the starting well. Note that the
Brownian particle has a finite probability of ending its
flight in the very same well from where it set out (closed
loops); hence, n1 1 n2 , 1. In view of our trapping
criterion such a BFR can be easily computed as a func-
tion of the applied tilt F for different temperature and
damping constant values. Our numerical results are dis-
played in Fig. 3(b). In close analogy with the simulation
of Fig. 3(a), our data for n2�n1 decay according to the ex-
ponential law exp�2F�Fj�t, g�� with tilt constant Fj pro-
portional to

p
gT . More notably, we observed that over the

entire range of (small) g and T values we simulated, the
numerical relation Fj�T , g� � �1�2�Fe�T , g� holds with
good accuracy (i.e., within less than 5%). This allows us
to connect the two alternate definitions of BFR in the sta-
tionary flow regime, namely,

n2

n1

�

µ
p2

p1

∂2

. (6)

This BFR property can be traced back to the well estab-
lished fact that as the diffusing particle hits the top of a
potential barrier (with almost zero speed [8–11]), it has
still a 50% chance of jumping to the left (with rate n2)
or to the right (with rate n1). This simple rate argument
relates Fj and Fe to one another in agreement with the
outcome of our simulation.

The two different BFR of Eq. (6) are a signature of the
jump reversal mechanism described in Refs. [15–18]. In
order to get a deeper insight in the steady-state jumping
process we computed the normalized distributions of the
jump lengths X and the corresponding trajectory lengths l
connecting two trapping events. Our numerical results are
displayed in Fig. 5 for three values of the tilt amplitude.

FIG. 5. Distribution of the trajectory lengths l (diamonds) and
jump lengths X to the right (circles) and to the left (squares) for
kT�v

2
0 � 1.2 and g�v0 � 1.27 3 1022. The l distributions

and the sum of both X distributions are normalized to unity.
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More distributions have been obtained over wide tempera-
ture and damping constant ranges. It is apparent on inspec-
tion that the average jump lengths X̄6, to the right and to
the left, respectively, are shorter than the average trajectory
length l̄. This implies that, as an effect of thermal fluctua-
tions, a jumping particle, after exiting a trapping well in
either direction, has a finite chance of reversing its velocity
prior to getting trapped again.

We investigated the difference between X̄6 	 X̄ and l̄ in
the zero tilt case: The ratio l̄�X̄ tends to one linearly with
decreasing the temperature. Moreover, we concluded that l̄
is proportional to T and inverse proportional to g; our data
for l̄�T , g� seem to follow closely the phenomenological
law [see Fig. 4(b)]

l̄
a

� 2
kT
aF1

(7)

with a � 2p and F1 given in Eq. (5). Our estimate (7)
for l̄ means that a thermally diffusing particle (with aver-
age thermal energy kT [8–11]) can jump over l̄�a poten-
tial barriers by dissipating an energy amount of the order
of aF1�2 in each unit cell (note that a jumping particle
performs only half a closed trajectory in the relevant skin
layer [8]). Another important remark: The ratio on the rhs
of Eq. (7), which also shows up in Eq. (5), is likely to be
the true control parameter of the jump statistics. Finally,
switching on the tilt F makes X̄1 grow exponentially at the
expense of X̄2 until, as expected, X̄2 � 0 and X̄1 � l̄.

In the present Letter we have investigated numerically
the backward-to-forward jump diffusion of a Brownian
particle on a one-dimensional periodic lattice. The ana-
lytic interpretation of the stationary jump statistics is meant
here as instrumental to the full understanding of stochas-
tic resonance [20] and thermal transport on a washboard
potential subjected to a periodic bias [21]. Moreover,
the dependence of the BFR on the damping constant and
the temperature allows an alternate characterization of the
complicated underdamped dynamics taking place on a pe-
riodic substrate [8,9].
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