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The basic principle of entanglement processing says that entanglement cannot increase unde
operations and classical communication. Based on this principle, we show thatany entanglement measure
E suitable for the regime of a high number of identically prepared entangled pairs satisfiesED # E #

EF , whereED and EF are the entanglement of distillation and formation, respectively. Moreover, w
exhibit a theorem establishing a very general form of bounds for distillable entanglement.
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Since the pioneering papers [1–3] on quantifying enta
glement, much has been done in this field [4–12]. Ho
ever, in the case of mixed states, we are still at the stag
gathering phenomenology. In the very fruitful axiomat
approach [4–6] there is not even an agreement as to w
postulates should be satisfied by candidates for entan
ment measures. Moreover, we do not know the qua
tum communication meaning of the known measures ap
from entanglement of formationEF and entanglement of
distillation ED [2], having the following dual meaning:
(i) ED�� � is the maximal number of singlets that can b
produced from the state� by means of local operations
and classical communication (LQCC). (ii)EF��� is the
minimal number of singlets needed to produce the st
� by LQCC operations. [More precisely,ED �EF� is the
minimal number of singletsper copy in the state� in the
asymptotic sense of consideringn ! ` copies altogether.]
Unfortunately, they are very hard to deal with. One c
ask a general question. Is there a rule that would someh
order the many possible measures satisfying some rea
able axioms? Moreover, is there any connection betwe
the axiomatically defined measures and the entanglem
of distillation and formation?

Surprisingly, it appears that just the two, historical
first, measures of entanglement [2] constitute the sou
after rule, beingextreme measures. In this paper we sho
that any measure satisfying certain natural axioms (two
them specific to theasymptotic regime of a high number
of identically prepared entangled pairs) must be confin
betweenED andEF :

ED # E # EF . (1)

The result is compatible with some earlier results
this direction. In Ref. [13] Plenio and Vedral provide
heuristic argumentation that an additive measure
entanglement should be no less thanED . Uhlmann
showed that nonregularized entanglement of format
[2] (closely related toEF) is the upper bound for all
convex functions which agree with it on pure states [14
Finally, the presented result is compatible with the res
by Popescu and Rohrlich [4], completed by Vidal [9
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stating the uniqueness of the entanglement measure
pure states.

The proof of the result (contained in Theorem 1) is ver
simple, but it is very powerful. Indeed, as a by-produc
we obtain (Theorem 2) surprisingly weak conditions for
function to be the upper bound forED . This is a remark-
able result, as the evaluation ofED is one of the central
tasks of the present stage of quantum entanglement the
In particular, we obtain elementary proof that the relativ
entropy entanglementEr [5,6] and the function considered
by Rains [11] are bounds for distillable entanglemen
Note that the proof of Ref. [11] involves complicated
mathematics, while the one of Ref. [6] is based on st
unproven additivity assumption. In addition, our resu
is very general, and we expect it will result in an eas
search for bounds on distillable entanglement. It is cruc
that the basic tool we employ to obtain the results
the fundamental principle of entanglement theory statin
that entanglement cannot increase under local operations
and classical communication [1,2,4]. Thus the principle,
putting bounds for the efficiency of distillation, plays a
similar role to that of the second law of thermodynamic
(cf. [4]), the basic restriction for the efficiency of hea
engines.

Let us first set the list of postulates we impose for en
tanglement measure. So far, the rule of choosing som
postulates and discarding others was an intuitive und
standing of what entanglement is. Now, we would lik
to add a new rule:Entanglement of distillation is a good
measure. Thus, we cannot accept a postulate that is n
satisfied byED . This is reasonable becauseED has a di-
rect sense of the quantum capacity of the teleportation [1
channel constituted by the source producing bipartite sy
tems. We will see that this rule will suppress some of th
hitherto accepted postulates: This is the lesson given us
the existence of bound entangled states [16].

We split the postulates into the following three groups
1. Obvious postulates.—(a) Non-negativity:E�� � $

0; (b) vanishing on separable states:E�� � � 0 if � is
separable; (c) normalization:E�jc1� �c1j� � 1, where
c1 � 1

p
2

�j00� 1 j11��.
© 2000 The American Physical Society
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2. Fundamental postulate: monotonicity under LQCC
operations.—(a) Monotonicity under local operation: If
either of the parties sharing the pair in the state � performs
the operation leading to state si with probability pi , then
the expected entanglement cannot increase

E��� $
X

i

piE�si� ;

(b) convexity (monotonicity under discarding informa-
tion):

E

µX
i

pi�i

∂
#

X
i

piE��i� .

3. Asymptotic regime postulates.—(a) Partial additivity:

E��≠n� � nE�� � ;

(b) continuity: If �c≠nj�njc
≠n� ! 1 for n ! `, then

1
n
jE�c≠n� 2 E��n�j ! 0 ,

where �n is some joint state of n pairs.
Let us now briefly discuss the considered postulates. In

the first group, the postulate of normalization is to pre-
vent us from the many trivial measures given by positive
constant multiply of some measure E. The axiom 1(a)
is indeed obvious (a separable state contains no entan-
glement). What, however, is not obvious is, Should we
not require vanishing of E if and only if the state is sep-
arable? The latter seems reasonable, because if the state
is not separable, it contains entanglement that should be
indicated by the entanglement measure. However, accord-
ing to our rule, we should look at distillable entanglement.
We can then see that the bound entangled states [16] are
entangled, but have ED equal to zero. Thus we should ac-
cept entanglement measures that indicate no entanglement
for some entangled states. This curiosity is due to the ex-
istence of different types of entanglement.

Let us now pass to the second group. The fundamen-
tal postulate, displaying the basic feature of entanglement
(that creating entanglement requires global quantum in-
teraction) was introduced in Refs. [1,2] and developed in
Refs. [4–6]. It was put into the above, very convenient,
form in Ref. [9]. Any function satisfying it must be invari-
ant, under product unitary transformations and constant on
separable states [9]. It also follows that, if a trace pre-
serving map L can be realized as a LQCC operation, then
E���L������ # E���.

The postulates of the first and second groups are com-
monly accepted. The functions that satisfied them (with-
out normalization axiom) have been called entanglement
monotones [9].

Let us now discuss the last group of postulates, called
“asymptotic regime ones” because they are necessary
in the limit of large numbers of identically prepared
entangled pairs, and can be discarded if a small number of
pairs are considered. This asymptotic regime is extremely
important as it is a natural regime both for the directly
related theory of quantum channel capacity [2] and the
recently developed “ thermodynamics of entanglement”
[4,13,17].

Partial additivity says that if we have a stationary, mem-
oryless source, producing pairs in the state � , then the
entanglement content grows linearly with the number of
pairs. A plausible argument to accept this postulate was
given in Ref. [4] in the context of thermodynamical analo-
gies. Plenio and Vedral [13] considered full additivity
E�� ≠ s� � E�� � 1 E�s� as a desired property. How-
ever, the effect of activation of bound entanglement [18]
suggests that ED is not fully additive, so, according to our
rule, we will not impose this stronger additivity.

Let us now pass to the last property. It states that, in the
region close to the pure states, our measure is to behave
regularly: If the joint state of large number pairs is close
to the product of pure states, then the densities of entangle-
ment (entanglement per pair) of both of the states should
also be close to each other. This is a very weak form of
the continuity exhibited, e.g., by von Neumann entropy
that follows from Fannes inequality [19]. We do not re-
quire the latter, strong continuity, because we expect that
entanglement of distillation can exhibit some peculiari-
ties at the boundary of the set of bound entangled states.
However, it can be seen that ED satisfies this weak conti-
nuity displayed as the last postulate of our list.

The continuity property as a potential postulate for
entanglement measures was considered by Vidal [9] in the
context of the problem of uniqueness of the entanglement
measure for pure states. Namely, Popescu and Rohrlich
[4], starting from thermodynamical analogies, argued
that entanglement of formation (equal to entanglement of
distillation for pure states [1]) is a unique measure, if one
imposes additivity and monotonicity (and, of course,
normalization). Later, many monotones different from EF

on pure states were designed [5,6,8]. There was still no
contradiction because they were not additive. However,
Vidal constructed a set of monotone additives for pure
states that still differed from EF for pure states [9]. He
removed the contradiction by pointing out that the missing
assumption was just the considered continuity. The
completed-in-this-way uniqueness theorem states that a
function satisfying the listed axioms must be equal to
entanglement of formation on the pure states.

In the following we will show that the above theorem
can be viewed as a special case of the general property
of entanglement measures (in this paper, we will call the
functions satisfying the list of postulates the entanglement
measures). Before we state the theorem we need defini-
tions of the entanglement of distillation and formation. We
accept the following definitions.

EF is a regularized version of the original entanglement
of formation Ef [2] defined as follows. For pure states,
Ef is equal to entropy of entanglement, i.e., von Neumann
2015
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entropy of either of the subsystems. For mixed states, it is
given by

Ef�� � � min
X

i

piEf�ci�, with � �
X

i

pijci� �cij ,

(2)

where the minimum is taken over all possible decom-
positions of � (we call the decomposition realizing the
minimum the optimal decomposition of � ). Now EF �
limnEf��≠n��n.

To define the distillable entanglement ED [2,7] (see
Ref. [10] for justifying this definition) of the state � , we
consider distillation protocols P given by a sequence of
trace-preserving, completely positive, superoperators Ln,
that can be realized by using LQCC operations, and that
map the state �≠n of n input pairs into a state sn acting
on the Hilbert space H out

n � Hn ≠ Hn with dimHn �
dn. Define the maximally entangled state on the space
H ≠ H by

P1�H � � jc1�H �� �c1�H �j ,

c1�H � �
1
p

d

dX
i�1

jii� ,
(3)

where ji� are basis vectors in H , while d � dimH . Now
P is the distillation protocol if, for high n, the final state
approaches the above state P1,

F � �c1�Hn�jsnjc1�Hn�� ! 1 (4)

(i.e., the fidelity F tends to 1). The asymptotic ratio DP

of distillation via protocol P is given by

DP ��� � lim
n!`

log2 dimHn

n
(5)

The distillable entanglement is defined by the maximum
of DP over all protocols,

ED��� � sup
P

DP . (6)

Now, the main result of this paper is the following.
Theorem 1.—For any function E satisfying the intro-

duced postulates, and for any state � , one has

ED�� � # E��� # EF��� . (7)

Remark.—For pure states we have ED � EF ; hence
from the above inequality it follows that all measures are
equal to EF in this case. This is compatible with the
uniqueness theorem.

Proof.—Surprisingly enough, the proof is elementary.
Both the left- and right-hand-side inequalities of the theo-
rem are proved by the use of the same line of argu-
mentation: (i) By definition, ED �EF� is asymptotically
constant during optimal distillation (formation) protocol;
(ii) distillation (formation) protocol is an LQCC operation
and cannot increase any entanglement measure; (iii) the
final (initial) state is the pure one; (iv) for pure states all
measures coincide by virtue of the uniqueness theorem.
2016
It then easily follows that, if the given measure E were,
e.g., less than ED , it would have to increase under optimal
distillation protocol. We used here additivity, because for-
mation and distillation protocols are collective operations
(performed on �≠n). Continuity is needed, because we use
the uniqueness theorem. By writing the above more for-
mally in the case E # EF , we obtain

E��� �
E��≠n�

n
#

P
i piE�ci�

n
�

P
i piEf �ci�

n

�
Ef��≠n�

n
n!`
! EF�� � , (8)

where we chose optimal decomposition of �≠n, so that theP
i piEf �ci� is minimal and hence equal to Ef��≠n� [20].

The first equality comes from additivity; the inequality is a
consequence of monotonicity [more precisely—convexity,
axiom 2(b)]. The next-to-last equality follows from the
uniqueness theorem. We will skip the formal proof of
the inequality ED # E, because in the following we prove
formally a stronger result concerning bounds for entangle-
ment of distillation.

Below we will show that the above, very transparent line
of argumentation is a powerful tool, as it allows one to
prove a very general theorem on the upper bounds of ED .

Theorem 2.—Any function B satisfying the conditions
(a)–(c) below is an upper bound for entanglement of
distillation: (a) Weak monotonicity: B�� � $ B���L������
where L is the trace-preserving superoperator realizable
by means of LQCC operations. (b) Partial subadditivity:
B��≠n� # nB���. (c) Continuity for isotropic state
��F, d� [11,21]. The latter is of the form

��F, d� � pP1�Cd� 1 �1 2 p�
1
d2 I ,

0 # p # 1 (9)

with Tr�� �F, d�P1�Cd�� � F. Suppose now that we have
a sequence of isotropic states � �Fd , d�, such that Fd ! 1
if d ! `. Then we require

lim
d!`

1
log2d

B���� �Fd , d���� ! 1 . (10)

Remarks.—(1) The above conditions are implied by our
postulates for entanglement measures. Specifically, the
condition (a) is implied by monotonicity; (b), by additiv-
ity; while the condition (c), by continuity plus additivity.
(2) If instead of LQCC operations we take other class C
of operations, including one-way classical communication,
the mutatis mutandis proof also applies [then the condition
(a) would involve the class C].

Proof.—We will perform analogous evaluation as in for-
mula (8) (now, however, we will not even use the unique-
ness theorem). By subadditivity we have

B�� � $
1
n

B��≠n� . (11)
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Since the only relevant parameters of the output of the pro-
cess of distillation are the dimension of the output Hilbert
space and fidelity F (see the definition of distillable en-
tanglement), we can consider distillation protocol ended
by twirling [21] that results in an isotropic final state. By
condition (a), distillation does not increase B, and hence

1
n

B��≠n� $
1
n

B�����Fdn , dn���� . (12)

Now, in the limit of large n, distillation protocol produces
F ! 1 and �log2dn��n ! ED���; hence by condition (c)
the right-hand side of the inequality tends to ED�� �. Thus
we obtain that B�� � $ ED�� �.

Using the above theorem, to find a bound for ED , three
things must be done: one should show that a chosen
function satisfies the weak monotonicity, then check sub-
additivity, and calculate it for the isotropic state, to check
the condition (c). Note that the weak monotonicity is
indeed much easier to prove than full monotonicity, as
given by postulate 2(a). Checking subadditivity, in con-
trast to additivity, is in many cases immediate: It in
fact holds for all so-far-known entanglement monotones.
Finally, the isotropic state is probably the easiest pos-
sible state to calculate the value of a given function. To
illustrate the power of the result let us prove that relative
entropy entanglement Er is bound for ED . Subadditiv-
ity and weak monotonicity are immediate consequences of
the properties of relative entropy used in the definition of
Er (subadditivity proved in Ref. [5], weak monotonicity
proved in Ref. [6]). The calculation of Er for the isotropic
state is a little bit more involved, but by using high sym-
metry of the state it was found to be [11] Er ���� �F, d���� �
log2d 1 F log2F 1 �1 2 F� log2

12F
d21 . By evaluating this

expression now for large d, we easily obtain that the condi-
tion (c) is satisfied. The proof applies without any change
to the Rains bound [11].

In summary, we have presented two results. The first
one has conceptual meaning leading to deeper understand-
ing of the phenomenon of entanglement. It provides some
synthetic overview of the domain of quantifying entangle-
ment in the asymptotic regime. One of the possible ap-
plications of the result would be to reverse the direction
of reasoning, and accept the condition ED # E # EF as
a preliminary test for a good candidate for entanglement
measure. The second result presented in this paper is of
direct practical use. We believe that it will make the search
for strong bounds on ED much easier, especially in higher
dimensions. Finally, we would like to stress that the results
display the power of the fundamental principle of entangle-
ment processing: the latter allows one not only to replace a
complicated proof by a straightforward one, but also makes
the argumentation very transparent from the physical point
of view.
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