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The basic principle of entanglement processing says that entanglement cannot increase under local
operations and classical communication. Based on this principle, we shoanytexttanglement measure
E suitable for the regime of a high number of identically prepared entangled pairs saligfiesE <
Er, whereEp and Er are the entanglement of distillation and formation, respectively. Moreover, we
exhibit a theorem establishing a very general form of bounds for distillable entanglement.

PACS numbers: 03.67.—a, 03.65.Ca

Since the pioneering papers [1—3] on quantifying entanstating the uniqueness of the entanglement measure for
glement, much has been done in this field [4—12]. How-pure states.
ever, in the case of mixed states, we are still at the stage of The proof of the result (contained in Theorem 1) is very
gathering phenomenology. In the very fruitful axiomatic simple, but it is very powerful. Indeed, as a by-product,
approach [4—6] there is not even an agreement as to whate obtain (Theorem 2) surprisingly weak conditions for a
postulates should be satisfied by candidates for entanglédnction to be the upper bound fa@r,. This is a remark-
ment measures. Moreover, we do not know the quanable result, as the evaluation &f, is one of the central
tum communication meaning of the known measures apatasks of the present stage of quantum entanglement theory.
from entanglement of formatioBr and entanglement of In particular, we obtain elementary proof that the relative
distillation Ep [2], having the following dual meaning: entropy entanglemei®, [5,6] and the function considered
(i) Ep(p) is the maximal number of singlets that can beby Rains [11] are bounds for distillable entanglement.
produced from the state by means of local operations Note that the proof of Ref. [11] involves complicated
and classical communication (LQCC). (i)-(¢) is the mathematics, while the one of Ref. [6] is based on still
minimal number of singlets needed to produce the stateanproven additivity assumption. In addition, our result
¢ by LQCC operations. [More preciself, (Er) is the is very general, and we expect it will result in an easy
minimal number of singletper copy in the statep in the  search for bounds on distillable entanglement. It is crucial
asymptotic sense of considering— <« copies altogether.] that the basic tool we employ to obtain the results is
Unfortunately, they are very hard to deal with. One carthe fundamental principle of entanglement theory stating
ask a general question. Is there a rule that would somehothat entanglement cannot increase under local operations
order the many possible measures satisfying some reasoand classical communication [1,2,4]. Thus the principle,
able axioms? Moreover, is there any connection betweeputting bounds for the efficiency of distillation, plays a
the axiomatically defined measures and the entanglemestmilar role to that of the second law of thermodynamics
of distillation and formation? (cf. [4]), the basic restriction for the efficiency of heat

Surprisingly, it appears that just the two, historically engines.
first, measures of entanglement [2] constitute the sought Let us first set the list of postulates we impose for en-
after rule, beingextreme measures. In this paper we show tanglement measure. So far, the rule of choosing some
that any measure satisfying certain natural axioms (two opostulates and discarding others was an intuitive under-
them specific to theasymptotic regime of a high number standing of what entanglement is. Now, we would like
of identically prepared entangled pairs) must be confinedo add a new ruleEntanglement of distillation is a good
betweenEp andEr: measure. Thus, we cannot accept a postulate that is not
En <E<E ) satisfied byEp. This is reasonable becauBg has a di-

b =5 =5F: rect sense of the quantum capacity of the teleportation [15]

The result is compatible with some earlier results inchannel constituted by the source producing bipartite sys-
this direction. In Ref. [13] Plenio and Vedral provided tems. We will see that this rule will suppress some of the
heuristic argumentation that an additive measure ohitherto accepted postulates: This is the lesson given us by
entanglement should be no less thap. Uhlmann the existence of bound entangled states [16].
showed that nonregularized entanglement of formation We split the postulates into the following three groups.
[2] (closely related toEf) is the upper bound for all 1. Obvious postulates.—(a) Non-negativity:E(¢) =
convex functions which agree with it on pure states [14]0; (b) vanishing on separable stateB(g) = 0 if ¢ is
Finally, the presented result is compatible with the resulgeparable; (c) normalizationE(|y+){¥+]) = 1, where
by Popescu and Rohrlich [4], completed by Vidal [9], ¢+ = %(IOO) + |11)).
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2. Fundamental postulate: monotonicity under LQCC
operations.—(a) Monotonicity under local operation: If
either of the parties sharing the pair in the state o performs
the operation leading to state o-; with probability p;, then
the expected entanglement cannot increase

E(@) = Y piE(0i):

(b) convexity (monotonicity under discarding informa

tion):
E(ZP:’Q:‘) = Z piE(@:).
3. Asymptotic regime postulates.—(a) Partial additivity:

E(e®") = nE(e);
(b) continuity: If (#®"|@,|y®") — 1 for n — oo, then

~1EW®) = Elen] — 0,

where g,, is some joint state of n pairs.

Let us now briefly discuss the considered postulates. In
the first group, the postulate of normalization is to pre-
vent us from the many trivial measures given by positive
constant multiply of some measure E. The axiom 1(a)
is indeed obvious (a separable state contains no entan-
glement). What, however, is not obvious is, Should we
not require vanishing of E if and only if the state is sep-
arable? The latter seems reasonable, because if the state
is not separable, it contains entanglement that should be
indicated by the entanglement measure. However, accord-
ing to our rule, we should look at distillable entanglement.
We can then see that the bound entangled states [16] are
entangled, but have Ep egual to zero. Thus we should ac-
cept entanglement measures that indicate no entanglement
for some entangled states. This curiosity is due to the ex-
istence of different types of entanglement.

Let us now pass to the second group. The fundamen-
tal postulate, displaying the basic feature of entanglement
(that creating entanglement requires global quantum in-
teraction) was introduced in Refs. [1,2] and developed in
Refs. [4—6]. It was put into the above, very convenient,
formin Ref. [9]. Any function satisfying it must be invari-
ant, under product unitary transformations and constant on
separable states [9]. It aso follows that, if a trace pre-
serving map A can be realized as a LQCC operation, then
E(A(e)) = E(0).

The postulates of the first and second groups are com-
monly accepted. The functions that satisfied them (with-
out normalization axiom) have been called entanglement
monotones [9].

Let us now discuss the last group of postulates, called
“asymptotic regime ones’ because they are necessary
in the limit of large numbers of identically prepared
entangled pairs, and can be discarded if a small number of

pairs are considered. This asymptotic regime is extremely
important as it is a natural regime both for the directly
related theory of quantum channel capacity [2] and the
recently developed “thermodynamics of entanglement”
[4,13,17].

Partial additivity saysthat if we have a stationary, mem-
oryless source, producing pairs in the state ¢, then the
entanglement content grows linearly with the number of
pairs. A plausible argument to accept this postulate was
given in Ref. [4] in the context of thermodynamical analo-
gies. Plenio and Vedral [13] considered full additivity
E(o ® o) = E(p) + E(o) as adesired property. How-
ever, the effect of activation of bound entanglement [18]
suggests that Ep is not fully additive, so, according to our
rule, we will not impose this stronger additivity.

Let us now passto the last property. It states that, in the
region close to the pure states, our measure is to behave
regularly: If the joint state of large number pairs is close
to the product of pure states, then the densities of entangle-
ment (entanglement per pair) of both of the states should
also be close to each other. Thisis a very weak form of
the continuity exhibited, e.g., by von Neumann entropy
that follows from Fannes inequality [19]. We do not re-
quire the latter, strong continuity, because we expect that
entanglement of distillation can exhibit some peculiari-
ties at the boundary of the set of bound entangled states.
However, it can be seen that Ep satisfies this weak conti-
nuity displayed as the last postulate of our list.

The continuity property as a potential postulate for
entanglement measures was considered by Vidal [9] in the
context of the problem of uniqueness of the entanglement
measure for pure states. Namely, Popescu and Rohrlich
[4], starting from thermodynamical analogies, argued
that entanglement of formation (equal to entanglement of
digtillation for pure states [1]) is a unique measure, if one
imposes additivity and monotonicity (and, of course,
normalization). Later, many monotones different from Ep
on pure states were designed [5,6,8]. There was till no
contradiction because they were not additive. However,
Vidal constructed a set of monotone additives for pure
states that still differed from Ep for pure states [9]. He
removed the contradiction by pointing out that the missing
assumption was just the considered continuity. The
completed-in-thissway uniqueness theorem states that a
function satisfying the listed axioms must be equal to
entanglement of formation on the pure states.

In the following we will show that the above theorem
can be viewed as a specia case of the general property
of entanglement measures (in this paper, we will cal the
functions satisfying the list of postulates the entanglement
measures). Before we state the theorem we need defini-
tions of the entanglement of distillation and formation. We
accept the following definitions.

Er isaregularized version of the original entanglement
of formation E, [2] defined as follows. For pure states,
E; isequal to entropy of entanglement, i.e., von Neumann
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entropy of either of the subsystems. For mixed states, it is
given by

Eg(@) = minD piEr(r), withe =D pilu) (Wil
1] 1 (2)

where the minimum is taken over al possible decom-
positions of ¢ (we call the decomposition realizing the
minimum the optimal decomposition of ¢). Now Ep =
lim,E(0®")/n.

To define the distillable entanglement Ep [2,7] (see
Ref. [10] for justifying this definition) of the state o, we
consider distillation protocols P given by a sequence of
trace-preserving, completely positive, superoperators A,
that can be realized by using LQCC operations, and that
map the state 0®" of » input pairs into a state o, acting
on the Hilbert space H°*t = H,, ® H, withdim#H,, =
d,. Define the maximally entangled state on the space
H e H by

P+(~7'[) = |§l’+(~7{)><¢+(~7‘[)|,
1<
pio(H) = Nz 1:21 lii),

where |i) are basisvectorsin H , whiled = dimZ . Now
P is the distillation protocol if, for high #n, the fina state
approaches the above state P4,

F = e (FHp)lol (3,)) — 1 (4)

(i.e., the fidelity F' tends to 1). The asymptotic ratio Dp
of distillation via protocol P is given by

log, dim#,
n

©)

Dp(g) = lim ©®)

The distillable entanglement is defined by the maximum
of Dp over al protocols,

Ep(o) = s:.,l)p Dp. (6)

Now, the main result of this paper is the following.
Theorem 1.—For any function E satisfying the intro-
duced postulates, and for any state ¢, one has

Ep(e) = E(e) = Er(0). (7

Remark.—For pure states we have Ep = Ef; hence
from the above inequality it follows that all measures are
equal to Er in this case. This is compatible with the
uniqueness theorem.

Proof.— Surprisingly enough, the proof is elementary.
Both the left- and right-hand-side inequalities of the theo-
rem are proved by the use of the same line of argu-
mentation: (i) By definition, Ep (Ef) is asymptoticaly
constant during optimal distillation (formation) protocol;
(ii) distillation (formation) protocol is an LQCC operation
and cannot increase any entanglement measure; (iii) the
final (initial) state is the pure one; (iv) for pure states all
measures coincide by virtue of the uniqueness theorem.
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It then easily follows that, if the given measure E were,
eg., lessthan Ep, it would have to increase under optimal
distillation protocol. We used here additivity, because for-
mation and distillation protocols are collective operations
(performed on o ®"). Continuity is needed, because we use
the uniqueness theorem. By writing the above more for-
mally in the case E = Er, we obtain

E(0®") - > piE() _ i PiEr(4)

E(@) = — " "
= B o), ®

where we chose optimal decomposition of ¢ ®", so that the
Y. PiEs(;) isminimal and hence equal to E(0®") [20].
Thefirst equality comes from additivity; the inequality isa
consequence of monotonicity [more precisely—convexity,
axiom 2(b)]. The next-to-last equality follows from the
uniqueness theorem. We will skip the formal proof of
theinequality Ep = E, because in the following we prove
formally a stronger result concerning bounds for entangle-
ment of distillation.

Below we will show that the above, very transparent line
of argumentation is a powerful tool, as it allows one to
prove avery general theorem on the upper bounds of Ep.

Theorem 2.—Any function B satisfying the conditions
(@)—(c) below is an upper bound for entanglement of
ditillation: (a) Weak monotonicity: B(p) = B(A(p))
where A is the trace-preserving superoperator realizable
by means of LQCC operations. (b) Partial subadditivity:
B(p®") = nB(p). (c) Continuity for isotropic state
o (F,d) [11,21]. The latter is of the form

Q(F.d) = pPo(C?) + (1 = p) 5 1.

0=p=1 (9

with Tr[e(F,d)P+(C?)] = F. Suppose now that we have
a sequence of isotropic states ¢ (Fy, d), such that Fy — 1
if d — oo. Then we require

. 1
L'jm@B(Q(Fd,d)) — 1. (10)

Remarks.— (1) The above conditions areimplied by our
postulates for entanglement measures. Specificaly, the
condition (@) is implied by monotonicity; (b), by additiv-
ity; while the condition (c), by continuity plus additivity.
(2) If instead of LQCC operations we take other class C
of operations, including one-way classical communication,
the mutatis mutandis proof also applies [then the condition
(a) would involve the class C].

Proof.—Wewill perform anal ogous eval uation asin for-
mula (8) (now, however, we will not even use the unique-
ness theorem). By subadditivity we have

Ble) = - Be®). )
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Since the only relevant parameters of the output of the pro-
cess of digtillation are the dimension of the output Hilbert
space and fidelity F (see the definition of distillable en-
tanglement), we can consider distillation protocol ended
by twirling [21] that results in an isotropic final state. By
condition (a), distillation does not increase B, and hence

L Bo®) = L B(o(Fy,.dy). (12)
n n

Now, in the limit of large n, distillation protocol produces
F — 1 and (log,d,)/n — Ep(g); hence by condition (c)
the right-hand side of the inequality tendsto Ep(@). Thus
we obtain that B(e) = Ep(@).

Using the above theorem, to find a bound for Ep, three
things must be done: one should show that a chosen
function satisfies the weak monotonicity, then check sub-
additivity, and calculate it for the isotropic state, to check
the condition (c). Note that the weak monotonicity is
indeed much easier to prove than full monotonicity, as
given by postulate 2(a). Checking subadditivity, in con-
trast to additivity, is in many cases immediate: It in
fact holds for all so-far-known entanglement monotones.
Finally, the isotropic state is probably the easiest pos-
sible state to calculate the value of a given function. To
illustrate the power of the result let us prove that relative
entropy entanglement E, is bound for Ep. Subadditiv-
ity and weak monotonicity are immediate consequences of
the properties of relative entropy used in the definition of
E, (subadditivity proved in Ref. [5], weak monotonicity
proved in Ref. [6]). The calculation of E, for theisotropic
state is a little bit more involved, but by using high sym-
metry of the state it was found to be [11] E, (o (F,d)) =
log,d + Flog,F + (1 — F)Iogzi,%f. By evaluating this
expression now for large d, we easily obtain that the condi-
tion (c) is satisfied. The proof applies without any change
to the Rains bound [11].

In summary, we have presented two results. The first
one has conceptual meaning leading to deeper understand-
ing of the phenomenon of entanglement. It provides some
synthetic overview of the domain of quantifying entangle-
ment in the asymptotic regime. One of the possible ap-
plications of the result would be to reverse the direction
of reasoning, and accept the condition Ep < E < Er as
a preliminary test for a good candidate for entanglement
measure. The second result presented in this paper is of
direct practical use. We believethat it will make the search
for strong bounds on Ep much easier, especially in higher
dimensions. Finally, wewould like to stressthat the results

display the power of the fundamental principle of entangle-
ment processing: the latter allows one not only to replace a
complicated proof by astraightforward one, but also makes
the argumentation very transparent from the physical point
of view.
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